@ OneStream”

APl Overview Guide

7.3.3 Release

Copyright © 2022 OneStream Software LLC. All rights reserved.

Any warranty with respect to the software or its functionality will be expressly given in the
Subscription License Agreement or Software License and Services Agreement between
OneStream and the warrantee. This document does not itself constitute a representation or
warranty with respect to the software or any related matter.

OneStream Software, OneStream, Extensible Dimensionality and the OneStream logo are
trademarks of OneStream Software LLC in the United States and other countries. Microsoft,
Microsoft Azure, Microsoft Office, Windows, Windows Server, Excel, .NET Framework, Internet
Information Services, Windows Communication Foundation and SQL Server are registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
DevExpress is a registered trademark of Developer Express, Inc. Cisco is a registered trademark
of Cisco Systems, Inc. Intel is a trademark of Intel Corporation. AMDG64 is a trademark of
Advanced Micro Devices, Inc. Other names may be trademarks of their respective owners.

Table of Contents

Table of Contents

Introduction

Development Technologies ...,
Programming Language ...
User Interface Technology ...,
Server TechnoloQy ...
Database Technology ...,

OneStream API Details and Database Documentation

Developer Fundamentals

VB.Netand CH#

Helpful Resources ...

Platform Engines

Workflow ENGINe ...
Stage Engine ...
Finance ENGINe ...,
Data Quality Engine ...
Data ManagementEngine

Presentation Engine ...

API Overview Guide

Table of Contents

BRADI 9
BusinessRules ... 10
Anatomy ofaBusinessRule 10
Business Rule Definition 10
Business Rule Classifications 12
Event Handler BusinessRules 13
Complex EXPreSSiONS ... 16
Business Rule TYPes ... 21
Organizing and Referencing Business Rules ... 30

API Structure and Organization ... 36
NAMESPACES ... oL 36
Namespaces Defined ... 37
Namespace Hierarchy ... 37
Microsoft Financial Calls 39
In-Solution Development ... 40
Custom Development ... 41
Using System ToolIS ... 42
System Business RUIES ... 42
Database 43
Tables . 43

API Overview Guide

Table of Contents

TOOIS 43
DataRecords ... 43
Client APLLIStiNg ... 44
Client API ObjectHierarchy 44
PowerShell . 48
Event Listing ... 52
Event Handler BusinessRules 52
Event Firing Sequences 55
Introduction ... 87
Member D . 88
Api.Pov.Time.Memberld ... 88
Api.Pov.Time.MemberldUsage ... 90
Api.Pov.Entity.Memberld 91
Api.Pov.Entity.Memberld Usage ... 92
Api.Pov.Account.Memberld ... 93
Api.Pov.Account.MemberldUsage ... 94
Dimension Primary Key - DimPK ... 95
DIMPKUSAQEe ... 95
Dimension Type |d ... 97
DimTypelD Usage ... 98

API Overview Guide

Table of Contents

Data Unit Dimension POV . 99
Data Unit Dimension POV Usage ..., 99
Time Functions 101
Api.Time.GetYearFromld 101
Api.Time.GetPeriodNumFromId ... 101
Api.Time.GetPeriodNumFromidUsage ... 101
Api.Time.GetNumDaysInTimePeriod ... 102
Api.Time.GetNumDaysInTimePeriod Usage ... 102
Api.Time. AddTimePeriods ... 103
Api.Time.AddTimePeriodsUsage ... 103

Api. TIme. AddYears ... 104
Api.Time. AddYearsUsage ..., 104
Using Member Functions for Calculations ... 106
GetMember .. 106
GetMemberUsage ... 106
GetMemberld ... 107
GetMemberlDUsage ... 107
GetBaseMembers ... 108
GetBaseMembers Usage ... 108

API Overview Guide

Table of Contents

Writing Stored Calculations ... 110
Overload Function 111
Api.Data.Calculate Usage ..., 111
IsDurableCalculatedData 112
IsCurableCalculatedDataUsage ... 112

Eval Function ... 112
Eval FunctionUsage ... 113
SUMIMANY e 114
Remove Functions ... 115
RemoveZeros ... 115
RemoveNoData ... 115
Remove FunctionsUsage ... 116
GetDataBuffer Functions ... 118
GetDataBuffer Function ... 118
GetDataBufferUsage ... 119
Unbalanced Math Functions 121
Unbalanced Math Functions 121
Unbalanced Math FunctionsUsage ... 122
GetDataBufferUsingFormula Function ... 122
FilterMembers . 122

API Overview Guide

Table of Contents

GetDataBufferUsingFormula Usage

API Overview Guide

Vi

Introduction

Introduction

The purpose of the API Guide is to provide detailed information about the technologies and
application programming interfaces available to consultants and developers interested in
extending the functionality of OneStream.

This document contains information about the technologies used in the OneStream product,
naming conventions and organizational approaches used by the OneStream engineering team. It
also includes detailed reference listings for APl methods and events exposed by OneStream.

API Overview Guide

Development Technologies

Development Technologies

Programming Language

The OneStream platform is based on the Microsoft .Net Framework. OneStream’s underlying
codebase is predominately made up of C# libraries with a few VB.Net libraries in use as well. C#
and Visual Basic .NET are the two primary programming languages used to code against the
.NET Framework. C# and VB.NET have very different syntax elements, but Microsoft developed
these languages simultaneously as part of a common .NET Framework development platform.
Both C# and VB.Net are developed, managed, and supported by the same language
development team at Microsoft. They compile to the same intermediate language (/L) which runs
against the same .NET Framework runtime libraries. Although programming syntax is different for
each language, almost every command in VB has an equivalent command in C# and vice versa.
Both languages reference the same underlying .NET Framework Base Classes to extend their
functionality.

User Interface Technology

The OneStream user interface is based on the Windows Presentation Foundation (WPF) in order
to provide a truly rich end user experience. WPF employs XAML, an XML based language, to
define and link various interface elements. WPF applications can be deployed as standalone
desktop programs, or hosted as an embedded object in a website. Windows 10 Store application
development provides another opportunity for WPF based applications to be deployed, but as
Windows only applications.

Server Technology

All OneStream code is hosted and executed with Microsoft Internet Information Services (//S).
This means that both the Web Server (service code) and Application Server (service code) are
executed within an 1IS Application Pool process host. The code is running on the application
server tier hosted within the application sever IIS application pool. This is a very important
concept to keep in mind because there will be times when a Business Rule must interact with
different elements of the system. The context in which the Business Rule is running needs to be
understood in order to establish communication and/or interact with those other system elements.

API Overview Guide 2

Development Technologies

Database Technology

OneStream was designed to run on all versions of the Microsoft SQL Server relational database
engine (Express, Standard, Data Center, Enterprise and Azure Database as a Service). For
larger organizations, the SQL Server Enterprise edition is recommended because OneStream
makes use of table partitioning. This enables maximum throughput during heavily multi-threaded
operations such as data transformation and consolidation. The OneStream engineering team is
committed to fully utilizing the capabilities of the most recent versions of SQL Server and to
keeping the OneStream platform optimized for new versions of SQL Server as they become
available.

OneStream API Details and Database Documentation

For more information on OneStream API functions and details on the OneStream Framework and
Application database tables and indexes, the OneStream API Details and Database
Documentation is available as part of the documentation. This can be found on MarketPlace
under Software Download. Create a folder on the PC on which this will be loaded and copy the
related zip file:

Right click and extract the zipped file’s contents here. Double-click the file which ends in chm and
this will launch the API Guide.

Contents are organized by the related Platform Engine (see Platform Engines). These are broken
down into Classes (e.g. DataApi), Overload Lists, Methods (e.g. GetDataCell), Syntax and
Parameters. The Index and Search tabs can be used to search by function name, enumerations,
properties, etc.

API Overview Guide 3

Developer Fundamentals

Developer Fundamentals
VB.Net and C#

The OneStream platform is based entirely on the Microsoft .Net Framework as is the Business
Rules engine. Therefore, VB.Net and C# are the logical choice for Business Rule syntax. At
execution time, all Business Rules are compiled on demand and cached for fast and reliable
execution. Writing a Business Rule in VB.Net or C# provides the end user with many advantages
over older products based on VBScript. Business Rule writers can expect exceptional code
performance, better error messaging, and better error handling because VB.Net and C# are a full
featured programming language. In the end, these capabilities result in a more reliable Business
Rule code.

NOTE: There are two broad Business Rule Classifications: Shared Business Rules
and ltem Specific Business Rules. Shared Business Rules can be written in either
VB.NET or C#, Item Specific Business Rules can be written in VB.NET only.

In-Solution Documentation

The Business Rule Editor includes context sensitive help for API properties and methods as well
as Snippets (code examples). In-solution documentation makes the process of writing a Business
Rule more efficient because both APl Documentation, Objects, and Samples are presented within
the Business Rule Editor window. In addition, useful coding examples accumulated by the
OneStream engineering and consulting teams are also presented in context sensitive manner
within the Business Rule editor. Companies and partners can author their own Snippets and
include them in their application as an extension of the OneStream predefined Snippets (Snippet
Editor MarketPlace Solution required).

Business Rules Editor Overview

The Business Rule editor is a powerful in-solution screen that provides integrated API context
help, syntax editing with intelli-sense, and full outlining capabilities. The actual syntax content
and Business Rule structure will be discussed at length in subsequent sections of this document.

The image below explains the major regions and elements of the Business Rule editor.

API Overview Guide 4

Developer Fundamentals

e
Ecliting
8 “®mIZ ZIF e

reew

Helpful Resources

VB.Net

VB.Net is one of the most popular programming languages in use today. This language is
especially popular amongst business users because the syntax is perceived to be more readable
and business user friendly than other programming languages. VB.Net still shares many of the
same syntax elements of older VB dialects such as VB6, VBA and VBScript. This means that
users who have written Macros in Microsoft Excel or used VBScript to write Business Rules in first
generation CPM solutions should feel comfortable with the core syntax elements of VB.Net. The
main learning challenge business users face when migrating to VB.Net is understanding the
object oriented nature of the language. In comparison to VBScript, VB.Net offers more elegant
coding opportunities. Many of the statements and processes are manually created in VBScript,
butin VB.Net they are encapsulated in object libraries on which users can simply call.

Microsoft VB.Net Learning

Getting comfortable with VB.Net takes a little awareness of the basic libraries and objects
provided by the Microsoft .Net Framework. The link below points to some resources that business
users may find helpful during the VB.Net learning process.

API Overview Guide 5

Developer Fundamentals

Microsoft Visual Basic

https://msdn.microsoft.com/en-us/library/2x7h1hfk.aspx

C#

C# (pronounced "See Sharp") is a modern, object-oriented, and type-safe programming
language. This language is especially popular amongst developers as it enabled them to build
many types of secure and robust applications that run in .NET. C# has its roots in the C family of
languages and will be immediately familiar to C, C++, Java, and JavaScript programmers.

Microsoft C# Learning

The link below points to some resources that business users may find helpful during the C#
learning process.

https://docs.microsoft.com/en-us/dotnet/csharp/

API Overview Guide

https://msdn.microsoft.com/en-us/library/2x7h1hfk.aspx

Platform Engines

Platform Engines

The platform is comprised of multiple processing engines. These engines have distinct
responsibilities with respect to system processing and consequently they expose different API
interfaces to the Business Rules they call. This section provides a brief overview of each engine
in the platform and describes the engine’s core responsibilities.

Workflow Engine

The Workflow Engine is thought of as the controlling engine or the puppeteer. The main
responsibility of this engine is to control and track the status of the business processes defined in
the Workflow hierarchies. This engine is primarily accessed through the BRApi and can be called
from other engines in order to check Workflow status during process execution. The Workflow
Engine provides a very rich event model allowing each Workflow process to be evaluated and
reinforced with customer specific business logic if required (see Appendix 2: Event Listing).

Stage Engine

The Stage Engine performs the task of sourcing and transforming external data into valid analytic
data points. The main responsibility of this engine is to read source data (files or systems) and
parse the information into a tabular format. This allows the data to be transformed or mapped to
valid Members defined by the Finance Engine. The Stage Engine is an in-memory, multi-
threaded engine that provides the opportunity to interact with source data as it is being parsed
and transformed. In addition to parsing and transforming data, the Stage Engine also has a
sophisticated calculation that enables data to be derived and evaluated based on incoming
source data. The Stage Engine provides quality services to source data by validating, mapping,
and executing Derivative Check Rules.

Finance Engine

The Finance Engine is an in-memory financial analytic engine. The main responsibility of this
engine is to enrich and aggregate base data cells into consolidated multi-Dimensional
information. The Finance Engine provides the opportunity to define sophisticated financial
calculations through centralized Business Rules as well as member specific Business Rules
(Member Formulas). It works concurrently with the Stage Engine to validate incoming
intersections and works with the Data Quality Engine to execute Confirmation Rules which are
used to validate analytic data values.

API Overview Guide 7

Platform Engines

Data Quality Engine

The Data Quality Engine is responsible for controlling data confirmation and certification
processes. This Confirmation Engine is used to define and control the sequence of data value
checks required to assert the information submitted from a source system is correct. The
Certification Engine is responsible for managing user certifications and determining the Workflow
dependents’ completion status. This engine is primarily accessed through the BRApi and may be
called from other engines in order to check data quality status during process execution.

Data Management Engine

The Data Management Engine provides task automation services to the platform. This engine
executes batches of commands that are organized into sequences which contain steps. Steps
represent entry points or mechanisms to execute features of other engines. For example, the
Clear Data Step uses the services of the Finance Engine. In addition, the Data Management
Engine has the ability to execute a Business Rule Step which executes a custom Business Rule
as part of a Data Management Sequence. This is an incredibly powerful capability because it
provides the ability to string together any combination of predefined processing steps with custom
Business Rule steps.

Presentation Engine

The Presentation Engine provides extensive data visualization services to platform. The
Presentation Engine is made up of the following component engines: Cube View Engine,
Dashboard Engine, Parameter Engine, Book Engine and Extensible Document Engine. The
Presentation Engine is responsible for managing and delivering content to the end user as well as
providing a development environment for custom user interface elements. This engine enables
OneStream MarketPlace application development capabilities and continues to evolve with each
product release. Like the Data Management Engine, the Presentation Engine interacts with and
can call the services of all other engines in the product.

API Overview Guide 8

Platform Engines

BRADpi

The BRApi is common across all Business Rules, engines and APIs being run, soitis not an
engine itself. A BRApi function runs outside of the other engines and can orchestrate certain
functions from within other engines. In other words, a BRApi function be run from one engine (e.g.
Parser) to tell other engines (e.g. Finance) to execute their own APls (e.g.
APIl.Data.GetDataCellUsingMemberScript). For another example, while the
API.Data.GetDataCell function is available from within the Finance engine, a similar BRApi called
GetDataCellUsingMemberScript can be run from any engine if given the appropriate arguments.
A common use is BRApi.ErrorLog.LogMessage from any engine.

API Overview Guide 9

Business Rules

Business Rules

Anatomy of a Business Rule

This section provides a detailed explanation of the following:
» Business Rule structure and fundamentals
» Business Rule Classifications
» Specific Business Rule Types
« Business Rule organization

¢ OneStream Business Rule framework

Best practices for Business Rule architecture

Business Rule Definition

A Business Rule is a class, meaning each business rule is an independent object encapsulating
code written in either VB.Net or C#. A business rule can be a one-line call to write a log message,
or it can be a full code library containing other custom classes, methods and properties.

Each OneStream Business Rule has a predefined Namespace, a Public Class and a Public
Function that the OneStream platform engines invoke when the Business Rule needs to be
called.

NOTE: There are two broad Business Rule Classifications: Shared Business Rules
and Item Specific Business Rules. Shared Business Rules can be written in either
VB.NET or C#, Item Specific Business Rules can be written in VB.NET only. All
code examples presented in this guide will be shown in VB.NET.

Predefined Object Names

* Namespace: OneStream.BusinessRule.<Business Rule Type>.<Unique Business Rule
Name>

API Overview Guide 10

Business Rules

e Class: MainClass;

e Function: Main

Example Business Rule Structure

Imports Syst
v Imports System.Ling

Isparts Microsoft VisualBasic
| Imports System.kin

Imports Onedt .
1 | Isports OseStress. Sharsd.Wof
¥ Imports OneStream.Shared.Engine

Impoarts OneStresm.Shared,Database
4 Isports OmeStream.Stage.Englne

Imports OneStresm.Stage.Database

Isports Oaeftoean Finance E
P Imports OmeStreas.Fin

“Maseipace Ooeiteean. BusinessRule. ExtedMer Write
Public Class MainClass

Public Function Madndf oninfo, Bywal globals As BRGlobsls, Byval apd As Dbject, Byvel srgs As Extengerdrgs) As Object

Write a message To The T
BRApd. Erroriog, LogMessage(si, “HeT

Return Wothing
Catch ex Az Exception
Theow Errortandler. Loghrite(si, Mes XFEwception{sl, &x})

Function Prototypes

Each Business Rule has one standard entry point Function Title called Main. The Function
definition below represents the standard prototype used by the Main Function in each OneStream
Business Rule. The Main Function always has the same standard parameter layout, but the last
two parameters, APl and ARGS, contain different object references based on the type of
Business Rule being executed.

Public Function Main

(

ByVal si As Sessionlnfo, Connection Object Required to use API

ByVal globals As BRGlobals, Global Variable Object Used to Share Values
ByVal api As Object, Specific API object (Different for each Type)

ByVal args As ExtenderArgs Specific Arguments (Different for each Type)

API Overview Guide 1

Business Rules

)
As Object

Business Rule Classifications

OneStream provides classifications for business logic organization. At the core, all business logic
is delivered and executed as compiled VB.Net or C# code. This means no matter what type of
business logic is used, there is a consistency in the syntax and compilation process. The reason
for different classifications has to do with when and how the business logic is invoked and how the
business rule is scoped.

There are two broad business rule classifications: shared business rules and item specific
business rules. Each engine in the system may support one or both business rule classifications.
Whenever a processing sequence is executed in the platform, the particular engine(s) involved
evaluates how and what business logic is associated with the process. This may include shared
business rules (named and event handlers) as well as item specific business rules (member
formulas, logical expressions, and confirmation rules).

NOTE: Shared business rules can be written in either VB.NET or C#, item specific
business rules can be written in VB.NET only.

Finance Engine Example

During a consolidation process, a Named Business Rule is associated with the Cube being
processed. The Cube contains Member Formulas associated with some of its Dimensions. In
this case, the Finance Engine compiles both the Named Business Rule and each individual
Member Formula in preparation for the calculation sequence.

Stage Engine Example

A similar example applies to the Stage Engine. During a parse and transform Workflow process,
a Named Business Rule is associated with the Data Source or Transformation Rules. In addition,
individual Data Source Dimensions or Transformation Rules have associated Logical
Expressions that are also fired. In this case, the Stage Engine compiles both Named Business
Rules and each individual Logical Expression in preparation for execution during the parse and
transform execution sequence.

API Overview Guide 12

Business Rules

Shared Business Rules

Shared Business Rules are reusable because the rule is written and stored centrally in the
Business Rule Library. This means the same rule can be called or referenced by multiple platform
components. For example, the Business Rule highlighted in the image below is a general
Extensibility Rule. This rule can be executed from the Business Rule Editor, called by a Data
Management Job or called by another Business Rule. Shared Business Rules are the code files
seen in the tree when the OneStream Syntax Editor is open, they are organized by type, (see
Business Rule Types in Chapter 4: Business Rules) and named by the user who created the rule.

fﬁ Business Rules - OPS_ShipPackageUsingName
DIROHIID

i inance Properfles | Formula
W Parser)
C » . = 0
» [Connector : # ¢+ RN = 2|9 &

16 Imports OmeStresm.Finance.Engine A

W Conditional Rule o 3 args : ; .
Imports OneStream.Finance.Database

[Derivative Rule) BRApi
B - Namespace
»-m Dashboard Data Set o
»- [Dashboard Extender

»- mi Dashboard XFBR String

4 @ Extensibilty Rules
% OPS_ShipPackageUsinglD 2 ' i
+/% 0PS_ShipPackageUsingName i 4

Event Handler Business Rules

Event Handler Business Rules are a predefined set of Shared Business Rules and are always
defined as an Extensibility Rule Type. Event Handler Rules are invoked during a processing
sequence by their related platform engine in order to supplement the process. Determine/filter
howl/if the execution behaves for specific Workflows or the Cube POV. When an Event Handler
Business Rule is called, the calling engine supplies information about the executed process
providing context about the process and information about the specific sub-event executed.

Predefined Event Handler Business Rules

The list below details the specific predefined Event Handlers available in the platform. For details
on the individual sub-events that fire for each Event Handler Business Rule, see Event Listing.

API Overview Guide 13

Business Rules

Data Management Event Handler
« Data Quality Event Handler

e Forms Event Handler

e Journal Event Handler

» Save Data Event Handler

« Transformation Event Handler

» Workflow Event Handler

 Wocf Event Handler

Item Specific Business Rules

Item Specific Business Rules are complete rules like Shared Business Rules, however they are
authored and stored with the specific platform item with which the rule is associated. There are
different reasons for using Item Specific Business Rules vs Shared Business Rules.

For example, when creating a one-off rule without any reusable value to other components in the
system, write an Item Specific Business Rule directly on the platform component because it
requires a very specific piece of business logic. Another example, which is more common when
creating calculation logic for an analytic model, is to write a Member Formula that directly
associates a calculation with a Dimension Member. This creates system maintenance clarity and
maintainability.

Item Specific Rules, in particular Member Formulas, can have a positive performance impact
because they allow calculations to be broken down into formula passes and processed in a
parallel (multi-threaded) fashion. The same formulas can be written in a Shared Finance
Business Rule, but the calculations will always execute in the serial manner defined in the rule.

Item Specific vs Shared Code Structure

As mentioned above, an Item Specific Business Rule and a Shared Business Rule are identical in
code structure. When writing an Item Specific Business Rule, the code editor presents some
hidden sections in the code window:

API Overview Guide 14

Business Rules

Formula Header

Formula Footer
¢ Helper Function Header
* Helper Function Footer

These hidden sections (i.e. Regions) keep the formula / expression as readable as possible. In a
Shared Business Rule, these sections are visible which make the rule more verbose. The idea
behind the Item Specific Business Rule is to create discrete code blocks that are easy to manage
and have limited interdependencies. If one knows how to write a Shared Business Rule, then
she/he also knows how to write an ltem Specific Business Rule and vice versa.

Item Specific Rules are categorized into three types: Member Formulas, Complex Expressions,
and Confirmation Rues. These relate to the platform engine with which they are associated.

Member Formulas

A Member Formula is assigned to a Dimension Member and executes within the Finance Engine
during a Cube processing sequence (see the Formula Design Guide in the OneStream Design
and Reference Guide for more information on processing sequences). Member Formulas provide
the same level of syntax and logic capability that exist when writing a Finance Shared Business
Rule, however custom consolidation, elimination, and translation logic cannot be written. Member
Formulas are a great choice for writing logic limited to calculations based on a single Member and
calculations that do not span Dimensions. If Member Formulas are written with these constraints
in mind, then the Dimension Member and its formula can be reused in different Cubes without
having dependencies on other Dimensions. This does not mean that a Member Formula cannot
look at other Dimensions. Referencing Dimension Members outside of the specific Dimension
where the formula exists will limit the reusability of the Dimension, or require all referenced
Dimensions be used together in any new Cube.

Member Formulas are written directly on a Dimension Member within the Dimension Library.
Navigate to the specific Member's Formula property and click the ellipsis in order to store a
Member Formula. The example below is a simple working capital Member Formula.

API Overview Guide 15

Business Rules

v = Beimowep Bopmen
v @ ~
@ 0 T
L]
I s -
o ek
o B asine
™ - (_:I Fommaila Ediior - [CuriRatia)

Xz Createhdembersos =
1 Craatebdsmbsres Retura apl.Devs. Getharalell [“AriSen: JTep/And 108l Colog™)
X: Applyidemberidl
M ApplyDateC elPkT
Xz hpphyDatatufferd
X GetDataCel

Xz GetDataCed

X0 GREDMICHIES
Xz GetDatalellEx

o GatDatalelin

Xz GetDataCellFrom:

X SecDataCell

Xz SgtDataktischme -

e ParisDataBubers: | 4 L

Xz GatExprassionDes Cefiniticr Objects | Sample o]
Syrita

A GebCiatalutlaifor Public Function GetDalaCeliiiyval dataCellPk As DataCellPi) As DataCel

a 0

Complex Expressions

A Complex Expression is a Business Rule assigned to Data Source Dimensions, Derivative
Rules, and Transformation Rules and execute within the Stage Engine during a transformation
processing sequence. Complex Expressions provide the same level of syntax and logic capability
that exist when writing a Stage Shared Business Rule. The primary reason for using a Complex
Expression rather than a Stage Shared Business Rule is the logic being written has no reusability.
Complex Expressions isolate the logic by associating it directly with a specific item.

API Overview Guide 16

Business Rules

Using Complex Expressions in a Data Source

Apply Complex Expressions to a Data Source Dimension by selecting the Dimension requiring
custom logic and setting the Logical Operator. The Logical Operator property opens the Logical
Expression Editor dialog and allows the user to either select a Shared Parser Business Rule or
write a Complex Expression. Both Shared Parser Business Rules and Parser Complex
Expressions result in the exact same compiled Business Rule code. The exception is a Complex
Expression is only executed for the Dimension to which it is applied and a Shared Parser Rule is
shared and can be called by many Dimensions.

=R -3 0N o i o% In B o oam
L}

Lamgis

API Overview Guide 17

Business Rules

Using Complex Expressions in a Derivative Rule
Apply Complex Expressions to a Derivative Rule by selecting the individual Derivative Rule

requiring custom logic and setting the Logical Operator. Clicking the Edit Rule Formulas x
toolbar button opens the Logical Expression Editor dialog and allows the user to either select a
Shared Derivative Business Rule, write a Complex Expression, or use a Pre-Built Expression.
Both Shared Derivative Business Rules and Derivative Complex Expressions result in the exact
same compiled Business Rule code. The exception is a Complex Expression is only executed for
the rule to which it is applied and a Shared Derivative Rule is shared and can be called by many
rules.

s A 0

B Ganeral

: Deseriplion | Dierivative Rules

B Sacurity

Becess Group Everyane & -

bainterance Grou Everyane & -
B Settings

Cube Dimension Jlame (Defivative) (]
+ =0
Rusle Marme

Calculate Value®ased On Driver Calculate Health Insurance Using A#[41107] < <_Healthins
LIRSS (7] Derivative Expressicn Editor [Caloulate Value Eased On Driver in Cuba]
Total Exclude Praor Calbs

Totad Include Prior Caley Expression Type | Complex Expression

.
Creste If Greater Than 1]
- - =
Use An Attrubute Crites 2 s 132 21 ¥ @al« oo
Literal Prafix ¥ aur_‘ Retrieve Corpirate Health Imjuranie Deiver Exflesie X (ell From Driver Cube A g
E Olm wvalueHealthinsRate As Declmal = Decimal o
Literad Suffi i angs Gin cellinfo ks DetelelilnfolsingesberScripgfls BRApd.Finance.Dats GetDeteCelilsd 0
G - " ' If Mot celllnfo Is Mothing Then
Group By Left 2 Chars bR 28 If Mot ¢elllnfo.DukaCellbx Is Moxming Tin pe
Group By Chars 3.4 24 valusHealtnIssRete = celllefo DataQllley. Dutslell Cel LASounT 0
30 Erd If
End If
Rule guerles the Salary Account
Gin valueSalary A3 Decimal = arps.{olemnivalee
‘Calculate snd returs Health Insurance Cost
If (vslueSalary <> Decimal.Zern) bnd (velusMesithinsRate <> Decimsl, Zero) Thes
Return (valuelalery * walueriealthinidate)
Else
40 "Just return the value from the stage
4 Return srgs. Lolumnielus
End T# -
4 3
o Carcel
W@ e Page 1 of 1

API Overview Guide 18

Business Rules

Using Complex Expressions in a Conditional Transformation
Rule

Apply Complex Expressions to a Transformation Rule by selecting the individual Transformation
Rule requiring conditional logic and setting the Logical Operator. Clicking the Edit Rule Formulas

¥x toolbar button opens the Logical Expression Editor dialog and allows the user to either select
a Shared Conditional Business Rule or write a Complex Expression. Both Shared Conditional
Business Rules and Conditional Complex Expressions result in the exact same compiled
Business Rule code. The exception is a Complex Expression is only executed for the rule to
which it is applied and a Shared Conditional Rule is shared and can be called by many rules.

NOTE: Shared Conditional Business Rules and Complex Expressions cannot be
applied to One-To-One Transformation Rule Types. One-To-One Transformation
Rules are executed during the parsing process and therefore are completely
processed prior to the conditional mapping process.

API Overview Guide 19

Business Rules

f Transfoernation F
= A& |t & | 5 5|
"BGeneral
Nama

T Target Value

Endial Compl Expression

fl

I:-|:I Conditional Expression Editor [1x]

Expression Type Comiphex Expression

| - Beginning Balance

& *| = 2| ¥ 8|« e
" ﬁﬂ-e;- _'. l:-'e:_:re target .I((:\u'.i'. value -
Dim account As String = srgs.GetTarget("as=)
» s : kals
1 Assign the Flow Sesber DESHI oA the FIFST CREFEITER OF ThE TAPQET BI{ount .
r & BRARI Select Case Left{account,l) g8al - CTA Begnnang Balance
Case "17,727,73" avement
Return "End_Inp”
Case Else - Check Sum Amt
RETUPA “Mone™
- a
ind Sriner Ending Balance
HC - Begin Balance Headcourd
Ifes
pations
= | [HC - Check Sum Headoount
) L IHC - Ending Balance Headoour
oK Cancel
(oo 1 JoN] | Page 1 of 1. .

Confirmation Rules

Confirmation Rules are called by the Data Quality Engine and Finance Engine. Apply Complex
Expressions to Confirmation Rules by selecting the individual Confirmation Rule and clicking the

Edit Rule Formulas /x toolbar button. This button opens the Rule Editor dialog and allows the
user to write a Complex Expression containing the Confirmation Rule logic. A Confirmation Rule
is only written on the specific rule to which it applies. Confirmation rules do not have an equivalent
Shared Business Rule because each Confirmation Rule requires specific logic.

API Overview Guide 20

Business Rules

TIP: Shared Finance Business Rules can be called from a Confirmation Rule. Create
standard helper functions in a Shared Finance Business Rule and call them from a
specific Confirmation Rule creating some reusable logic and improving the overall
Confirmation Rule infrastructure maintenance (see Business Rule Organization and
Referencing in Business Rules).

Expresshon
Code

8 Gemeral
:Ces:up'.uan
B Security
Arcess Group & -
Maintenance Gefup B -
8 Settings
Scenana Type ame
* -9
ovder T Rulf Mame UENCy T Frequency Member Fite T Rude Text T Action T Failisre Mes
5 Al Time Penods Assets-Labilties-Shareholders Egu = Error [Fad) Balance She
You must ks
cument bala
- - e
& = &5 | ¥ Ba L Attach your

O ap : |'1'.-'.'.ul:c that Assest Mimes Lisblities/Eq a
args . Confirmat Lonkul eArgs . DL splayVi
* G aigs 1# args Confirmationfuleirgs Displayvaluoe
. Retyrn True
» g BRAp s | ease
* ﬂ:,g.-.mg.:.-_g] Retwrn False
End If

oK Canced

Business Rule Types

Finance

Finance Business Rules are used to generate multi-Dimensional calculations. These Business
Rules are written as Shared Business Rules and applied to a Cube or Member Formulas.

API Overview Guide

21

Business Rules

Invoking Engine
Finance

API Object Type
FinanceAPI

Args Object Type
FinanceRulesApi

These contain multiple child objects that are populated based on how the rule type is called.
¢ FinanceRulesApi.MemberListHeadersArgs
* FinanceRulesApi.MemberListArgs
« FinanceRulesApi.DataCellArgs
¢ FinanceRulesApi.FXRateArgs
* FinanceRulesApi.ConfirmationRuleArgs
* FinanceRulesApi.CalculateArgs

¢ FinanceRulesApi.DrillDownArgs

Common Usage

The list below details the common use cases that apply to Finance Business Rules:
« Stored Calculation of a Member Value
« Dynamic Calculation of a Member Value
¢ Programmatic Member Filters
* Scenario Copy Logic
¢ Allocation Logic
« Conditional No Input Rules
» Custom Consolidation Logic (Shared Business Rule only)

» Custom Translation Logic (Shared Business Rule only)

API Overview Guide 22

Business Rules

e Custom Elimination Logic (Shared Business Rule only)
« Confirmation Rule Logic

¢ Custom Calculations (Done via Dashboard Parameter Components)

Parser

Parser Business Rules are used to evaluate and/or modify field values being processed by the
Stage Parser Engine as it reads source data. These Business Rules are written as Shared
Business Rules or Logical Expressions and applied to a Data Source Dimension.

Invoking Engine
Stage

API Object Type
ParserDimension

Args Object Type
ParserArgs

Common Usage

The list below details the common use cases that apply to Parser Business Rules.
» Custom Parsing Logic
 Field Value Concatenation
* Field Value Bypassing

« Evaluate Field other than Current Field being Parsed

Connector

Connector Business Rules are used to communicate with, collect data from, and drill back to
external systems. These Business Rules are written as Shared Business Rules and applied to a
Data Source.

Invoking Engine
Stage

API Object Type
Transformer

API Overview Guide 23

Business Rules

Args Object Type
ConnectorArgs

Common Usage

The list below details the common use cases that apply to Connector Business Rules.
* Source System Connection Logic
¢ Source System Field List Logic
* Source System GetData Logic

» Source System DrillBack Logic

Conditional Rule

Conditional Rules (mapping) are used to conditionally evaluate mapping criteria during the data
transformation process. These Business Rules are written as Shared Business Rules or Logical
Expressions and applied to a Transformation Rule definition.

Invoking Engine
Stage

API Object Type
Transformer

Args Object Type
ConditionalRuleArgs

Common Usage

The list below details the common use cases that apply to Conditional (mapping) Business Rules.
« Evaluate Source Values and Conditional Map Target

« Evaluate Other Mapped Value and Conditional Map Target

API Overview Guide 24

Business Rules

DerivativeRule

Derivative Rules (derive data prior to mapping) are used to evaluate and/or calculate values
during the data derivation process. These Business Rules are written as Shared Business Rules
or Logical Expressions and applied to a Derivative Rule definition.

Invoking Engine
Stage

API Object Type
Transformer

Args Object Type
DerivativeRuleArgs

Common Usage

The list below details the common use cases that apply to Derivative (derived data) Business
Rules.

» Calculate Mathematical Expressions

Lookup Value from Transformation Cache for use in Calculations

Lookup Value from Cube for use in Calculations

» Source System Check Rule Logic (validation rules on source data)

Cube View Extender

Cube View Extender Rules are used to apply advanced Cube View formatting to any Cube View
Report. Using custom formatting allows the Cube View design to go beyond the standard Cube
View formatting properties and provides flexibility for specific formatting needs. The Extender
Rule is used in conjunction with the Custom Report Formatting properties on the Cube View under
General Settings|Report Tab.

Invoking Engine
Presentation

API Object Type
No specific API (used General BRApiI)

API Overview Guide 25

Business Rules

Args Object Type

CubeView
CubeViewExtenderFunctionType
CubeViewExtenderReport
CustomSubVars

FunctionType

Common Usage

» Display different logos on select reports based on conditional logic or security and manage
their placement and size

» Customize the page number in the header or footer
Page numbers can be on the top or bottom row of a report and the horizontal position can
be specified for rows. This only applies to the top or bottom rows.

» Formatindividual header and footer fields

e Customize the Cube View Header
o Control the Left, Right, Center Subtitle widths
° Control the font size of Title and Subtitles

» Customize the date display

e Customize bottom text alignment

« Apply Conditional Formatting
Format cells based on their contents. Change the text color of a value in order to effectively
hide the result.

» Customized Report row and column formatting such as borders, background and text
colors and alignment

API Overview Guide 26

Business Rules

DashboardDataSet

DashboardDataSet Rules are used to create programmatic query results. This rule type combines
multiple types of data into a single result set using the full syntax capability of VB.Net or C#. These
Business Rules are written as Shared Business Rules and applied to Dashboard Data Adapters
or Dashboard Parameters.

Invoking Engine
Presentation

API Object Type

No specific APl (used General BRApi)

Args Object Type
DashboardDataSetArgs

Common Usage

The list below details the common use cases that apply to DashboardDataSet Business Rules.
+ Combine Different Types of Data for a Report
 Build Programmatic Data Queries (e.g., analytic plus SQL)
« Conditionally Build Data Query Reports

« Conditionally Build Data Query Parameters

DashboardExtender

DashboardExtender Rules are used to perform a variety of tasks associated with custom
Dashboards and MarketPlace Solutions. These Business Rules can be thought of as multi-
purpose rules and make up the majority of the code written in a MarketPlace Solution. In addition,
they are written as Shared Business Rules and applied to Application Dashboard Parameter
Components (Buttons, Combo Boxes, etc.).

Invoking Engine
Presentation

API Object Type
No Specific API (uses General BRApi)

API Overview Guide 27

Business Rules

Args Object Type
DashboardExtenderArgs

Common Usage

The list below details the common use cases that apply to DashboardExtender Business Rules.
» Execute a Task when the User Clicks a Button
¢ Perform a Task and Show a Message to the User
» Perform a Custom Calculation
* Upload a File from the End User’s Machine
¢ Automate a Workflow
¢ Build a Custom Workflow
» Create Custom Data Tables

* These rules are basically limited to the imagination of the developer

DashboardStringFunction

DashboardStringFunction (reference as XFBR) Rules are used to process conditional Dashboard
Parameters. These rules inspect and alter a Dashboard Parameter value using the full syntax
capabilities of VB.Net or C#. DashboardStringFunctions are written as Shared Business Rules
and called by using a XFBR(BusinessRuleName, FunctionName, UserParam=[UserValue])
specification anywhere a standard Dashboard Parameter is used.

Invoking Engine
Presentation

API Object Type
No Specific API (uses General BRApi)

Args Object TypeDashboardStringFunctionArgs

Common Usage

The list below details the common use cases that apply to DashboardStringFunction (i.e.,
conditional Parameters) Business Rules.

API Overview Guide 28

Business Rules

« Evaluate a Dashboard Parameter and conditionally return another Value
+ Evaluate a Cube View Parameter and conditionally return another Value

« This Business Rule can be substituted anywhere a Dashboard Parameter is used in order
to evaluate the Supplied Parameter value and return a different value

Extender

Extender Rules are the most generalized type of Business Rule in the platform. Use these to write
a simple utility function or a specific helper function called as part of a Data Management Job.
These Business Rules are written as Shared Business Rules and executed directly from the code
editor, a data management job or the Finance Engine during an external Dimension request (i.e.,
read Dimension Members from an external list).

Invoking EngineBusiness Rule, Data Management, Finance

API Object TypeNo Specific API (uses General BRApiI)

Args Object Type

ExtenderArgs

This contains multiple child objects that are populated based on how the rule type is called.

« ExtenderArgs.DataMgmtArgs

« ExtenderArgs.ExternalDimSourceArgs

Common Usage

The list below details the common use cases that apply to Extender Business Rules.
« Create a General Helper Rule for Administrators Only
» Create Data Management Business Rule Step Logic

» Create a Query to fill an External Dimension List

API Overview Guide 29

Business Rules

Organizing and Referencing Business Rules

The Business Rule framework provided organizes business rules to maximize their reuse. You
can link business rules and reference one business rule from another. You can also link and call
external DLLs from a business rule. This section describes how to reference a shared business
rule and an external DLL from another business rule.

Defining a Reference to a Shared Business Rule

When you create a shared business rule is created, its public members can be referenced and run
by other shared and item specific business rules. Creating a shared or referenced business rule
lets you:

* Create a list of shared constant values.
» Create a set of standard helper functions.

« Centralize the maintenance of shared logic.

Reference Syntax

This section defines the syntax required to reference a shared business rule from another shared
or item specific business rule.

Shared business rules referencing other shared business rules

To create a reference from one shared business rule to another, go to the rule calling a Public
Method of another shared business rule and make a declaration in the Referenced Assemblies
property. The syntax requires a BR\ prefix and the business rule name to reference. A rule may
reference either a VB.NET or C# rule.

TIP: Reference multiple business rules by creating a comma-separated list of reference
statements.

API Overview Guide 30

Business Rules

I:._,ﬁ Business Rules - OPS_ShipPackageUsinglD

O % OH|« 1 B

—_— =r =rrwry =

+% CPP_ParamHelper Properties | Formula
J% €5P_ParamHel
* ~raram per B General
+E OPS_ParamHelper Mame
% PLP_ParamHelper Tume
+/x SNE_Paramielper Referenced Assemblies BR\OPS_PostalServiceHelper
VETLP_ParamHelper B Security
4 [Extensibility Rules hcoess Group Everyone & |-
+/x OP5_ShipPackagelsingID Maintenance Group Administrators @& -

% OPS_ShipPackageUsingMarms _

Syntax

BR\<business rule name to reference>
Example (Single Reference)
BR\OPS_PostalServiceHelper
Example (Multiple References)

BR\OPS_PostalServiceHelper; BR\CPP_SolutionHelper

Referencing a Shared Business Rule From an Item Specific
Business Rule

Finance, Parser, ConditionalRule and DeriviativeRule shared business rules have equivalent item
specific business rules. When you create a shared business rule, set the Contains Global
Functions For Formulas property to True to make the rule available to \item specific business
rules. Item specific business rules do not have a Referenced Assemblies property so can only
reference shared rules of the same engine type with the Contains Global Functions For Formulas
property setto True.

In the example below, the SharedForecastSeeding rule can be called from any other Finance rule
because its Contains Global Functions For Formulas property is True.

API Overview Guide 31

Business Rules

E:U Business Rules - SharedForecastSeeding

DIk OH|

¢ Finance Properties | Formula
¥ CorporateBusinessRules
% SharedConfirmationRules B General
+% SharedForecastSeeding _ e
JE ¥FR_CVDataCellHelper

_) Contains Global Functions For Formulas True
% XFR_CVEavUnFavvariance 1

: Referenced Assemblies
J% XFR_MemberListalphabetical Lisiiatissiiests ittt st et

B Security
[% XFR_MemberListEntitylsiC
B e Aceess Group Everyone
+% XFR_MemberListRanked .
- Maintenance Group Everyone & |-

+x XFR MemberListSoarseData -

NOTE: If a Finance business rule has Contains Global Functions For Formulas set
to True, changes to the business rule have a metadata status impact and change
the Calculation Status to OK, MC. This dependency must occur because a global
rule can be used by a member formula calculation which can impact the status of
the Finance Engine’s data (analytic / Cube data).

Using a Code Declaration

Once areference is made to a shared business rule, its Public Methods (Functions / Subs) can be
called. To access the Public Methods, declare an instance of the rule in the code using the
Business Rule’s fully qualified Namespace. This creates an object variable that references the
shared business rule calls its Public Methods.

Example Declaration
‘Declaring an object variable to reference a shared business rule.

Dim opsHelper As New OneStream.BusinessRule.DashboardExtender.OPS_
PostalServiceHelper.MainClass

Example Usage
‘Executing a function on the Reference business rule object variable

Dim desc As String opsHelper.GetFieldFromID(si, "Dashboard"”, "Name",
dashName, "Description")

API Overview Guide 32

Business Rules

Referencing an External .Net DLL

Developers can build and reference custom Microsoft .Net DLLs from shared business
rules. These are written in either VB.Net or C#. Custom, encapsulated business logic can be
protected within an external DLL written in Microsoft Visual Studio.

Create a DLL referenced by a business rule to:
» Protect domain specific intellectual property (hide value programming logic).
» Separate code with dependencies on other programs (system integration wrappers).

« Complex logic requiring development tools only available within Microsoft Visual Studio
(Web Service Discovery and Interface Development).

Installing and Configuring DLLs

Perform these tasks to enable an external DLL to be referenced from a shared business rule.

1. Specify the BusinessRuleAssemblyFolder located in the Application Server configuration
file. This folder should be shared by all application servers. The folder must be accessible
via the Account Credentials used to configure the IIS Application Pool on the application
server.

This setup is a best practice, but not required. Alternatively, you can reference the external
DLL from a folder on each application server. When the DLL is updated, copy ittoa
standard folder on each application server.

2. Identify or create the external DLL to be called and copy it to BusinessRuleAssemblyFolder.
When a business rule runs and an external DLL reference with the XF\ prefix is found in the
Referenced Assembilies property of the rule, the application server looks in the
BusinessRuleAssemblyFolder specified in the application server configuration file to find
the DLL to reference.

3. Add a reference specification to the DLL in the Referenced Assemblies property of the
business rules using it.

Reference Specification

This section defines the syntax required to reference an external DLL using the shared business
rule's Referenced Assemblies property. There are three methods to reference an external DLL.

API Overview Guide 33

Business Rules

Method 1
This method uses the XF\ prefix to create a reference to an external DLL located in the
BusinessRuleAssemblyFolder folder which is specified in the application server configuration file.

Syntax
XF\<External DLL Name to Reference>

Example (Single Reference)
XF\ExternalCode.DLL

Example (Multiple References)
XF\ExternalCode1.DLL;XF\ExternalCode2.DLL

Method 2
This method uses the file system path C:\DLLFolderName\ to create a reference to an external
DLL on each application server.

NOTE: The same folder path and DLL must exist on all application servers. This
method is not a best practice for custom business logic DLLs because it increases
maintenance.

You can use a file system path to reference an external DLL that already exists on an application
server, as part of the operating system or as an installed component.

Syntax
C:\DLLFolderName\<External DLL Name to Reference>

Example (Single Reference)
C:\DLLFolderName\ExternalCode.DLL

Example (Multiple References)
C:\DLLFolderName\ExternalCode1.DLL; C:\DLLFolder\ExternalCode2.DLL

Code Declaration

Once areference is made to an External DLL from a shared business rule, the Public Methods
(Functions / Subs) of that external DLL can be called. To access the shared business rule’s Public
Methods, declare an Import to the Namespaces defined by the DLL, then create an instance of
the desired class to use in the code.

Example Import
Imports YourNamespace.SubNamespace

Example Declaration

API Overview Guide 34

Business Rules

‘Declaring an object variable to reference a class on the external DLL
Dim extHelper As New YourClass

Example Usage

‘Executing a Function on the external DLL

Dim desc As String extHelper.YourFunciton(*“SomeParameter”)

Method 3
This method uses a Windows environment variable to create a reference to an external DLL. All
standard Windows paths are supported and the name is determined by .NET.

Syntax
%System%\DLLName.DLL

Example
%userprofile%\documents\WindowsBase.DLL

API Overview Guide 35

API Structure and Organization

API Structure and Organization

Namespaces

The Microsoft .Net Framework organizes code libraries into subject areas called Namespaces.
The process begins with identifying the Namespaces (libraries) required for the procedure being
created. Namespaces provide distinction to the objects and methods that exist in a code

library. As a best practice, Namespaces typically start with the name of the company that created
the code library.This prevents naming conflicts for objects that share a common name, but were
created by different software providers.

In an effort to keep coding syntax as terse as possible, the .Net Framework allows the user to
specify common Namespaces to use at the top of a Business Rule. These lines are preceded by
the key word Imports. Adding Imports Statements prevents having to type an object’s fully
qualified name within a Namespace.

All Business Rules are prepopulated with both the commonly used Microsoft Namespaces as well
as the OneStream specific Namespaces. For example, adding the statement Imports
System.Math to a Business Rule enables access to objects in the System.Math Namespace.
Instead of typing System.Math.Round(100.05,0), type Round(100.05,0).

The example below shows the Namespace references used in a standard Extensibility Rule.

Properties | Formula

r RN = 21 F 82
b @5 api HlImports System X
> | Imports System.Data
» @5 args 2 | Imports System.Data.Common

» @5 ERApI
» @5 Snippets

a Imports OneStre Shared.cf

0 | Imports OneStream.Shared.Engine
Imports OneStream.Shared.Database

2 Imports OneStream.Finance.Engine

4 ElNamespace OneStream.BusinessRule.Finance.CorporateBusinessRules
5 B Public Class MainClass
6 Public Function Main{ByVWal si As SessionInfo, ByVal globals As BRGlobals, ByVal api As FinanceRuleshpi, ByVal arg
42 End Class
43 | End Namespace
-

4 »

API Overview Guide 36

API Structure and Organization

Namespaces Defined

OneStream is a large and sophisticated software platform and consequently a great deal of effort
went into organizing the code base into a hierarchical set of Namespaces. This section defines
the Namespace hierarchy and explains the primary purpose of the code libraries in each
Namespace. It is important to understand structure and meaning of the platform Namespaces
because most APl methods accept and return objects defined within specific Namespaces. By
understanding the structure of the Namespace hierarchy, developers can browse for objects
using intelli-sense in the syntax editor.

Namespace Hierarchy

The hierarchy below denotes the platform Namespaces and the object libraries contained within
them. This hierarchy is explored from within the Business Rule syntax editor by typing
OneStream. and navigating through the intelli-sense popup lists. This technique helps find objects
to pass into an API function, objects returned from an API function, or common helper classes
available in the platform.

OneStream (Root Namespace)
OneStream.BusinessRule
OneStream.BusinessRule.Finance
OneStream.BusinessRule.Parser
OneStream.BusinessRule.Connector
OneStream.BusinessRule.ConditionalRule
OneStream.BusinessRule.DerivativeRule
OneStream.BusinessRule.DashboardDataSet
OneStream.BusinessRule.DashboardExtender
OneStream.BusinessRule.DashboardStringFunction
OneStream.BusinessRule.Extender
OneStream.Client

OneStream.Client.SharedUI
OneStream.Client.SharedUI.FinanceMsgStrings
OneStream.Client.SharedUI.FinanceUIStrings
OneStream.Client.SharedUI.GeneralMsgStrings
OneStream.Client.SharedUI.GeneralUIStrings
OneStream.Client.SharedUI.StageMsgStrings
OneStream.Client.SharedUI.StageUIStrings
OneStream.Client.SharedUI.StringResourceFileType

OneStream.Client.SharedUI.StringResourceHelper

API Overview Guide 37

API Structure and Organization

OneStream.Client.SharedUI.XFStrings
OneStream.Finance

OneStream.Finance.Engine
OneStream.Finance.Engine.DataApi
OneStream.Finance.Engine.EvalDataBufferDelegate
OneStream.Finance.Engine.FinanceRulesApi
OneStream.Finance.Engine.IAccountApi
OneStream.Finance.Engine.ICalcStatusApi
OneStream.Finance.Engine.IConsApi
OneStream.Finance.Engine.ICubesApi
OneStream.Finance.Engine.IDimensionsApi
OneStream.Finance.Engine.IEntityApi
OneStream.Finance.Engine.IFlowApi
OneStream.Finance.Engine.IFunctionsApi
OneStream.Finance.Engine.IFxRatesApi
OneStream.Finance.Engine.IMembersApi
OneStream.Finance.Engine.IPovApi
OneStream.Finance.Engine.IScenarioApi
OneStream.Finance.Engine.ITimeApi
OneStream.Finance.Engine.IUDApi
OneStream.Finance.Engine.IViewApi
OneStream.Finance.Engine.IWorkflowApi
OneStream.Stage

OneStream.Stage.Engine
OneStream.Stage.Engine.Parser
OneStream.Stage.Engine.ParserDimension
OneStream.Stage.Engine.TransformerDataCache
OneStream.Stage.Engine.Transformer
OneStream.Stage.Engine.TransformerDimension
OneStream.Stage.Engine.TransformRuleCache
OneStream.Shared

OneStream.Shared.Engine
OneStream.Shared.Engine.ExternalWcfClient
OneStream.Shared.Engine.TaskActivityStepWrapperItem
OneStream.Shared.Database
OneStream.Shared.Database.DbConnInfo

OneStream.Shared.Common

API Overview Guide

API Structure and Organization

OneStream.Shared.Common. (Various Constants, Helper Classes & Data Transfer Objects ‘DTO’)
OneStream.Shared.Wcf

OneStream.Shared.Wcf. (Various Constants & Data Transfer Objects ‘DTO’)

Microsoft Financial Calls

Financial calls are part of the Microsoft.VisualBasic namespace, and can be used to for
calculations such as:

¢ Depreciation

Present and future values

Interest rates

Rates of return
e Payments

These functions are available to anyone with access to Business Rules. They can be explored
within the Business Rule syntax editor by typing Microsoft.VisualBasic.Financial then navigating
through the intelli-sense popup lists.

To view all methods from the Microsoft.Visual Basic Financial class used in a Business Rule:
1. Navigate to the Business Rule Editor:
a. Inthe OneStream Software application, click the Application tab.
b. Under Tools, click Business Rules.
c. Expand the appropriate Business Rules category or click Search on the toolbar.
2. Click the Formula tab.
3. Inthe editor window, type Microsoft.Visualbasic.Financial.

A list of methods displays.

API Overview Guide 39

API Structure and Organization

12 Imports
13 Imports
14 Imports
15 Imports
16 Imports
17 Imports

OneStream.Shared.Engine
OneStream.Shared.Database
OneStream.Stage.Engine
OneStream.Stage.Database
OneStream.Finance.Engine
OneStream.Finance.Database

19 FNamespace OneStream.BusinessRule.Extender.ATony
20 - Public Class MainClass

IRRTTR WY IR TR N I S S TR S S ST N
™I T =] " N = J Bk

T
Dim fieldTokens As N
fieldTokens.Add("xfGuid#:[Fieldl]: :NewGuid™)
fieldTokens.Add("xfText#:[Field2]")
fieldTokens.Add("xfInt#:[Field3]"™)

Return Nothing

Fa¥rh av Az Fwvrantdian

ew List(Of String)

Public Function Main(ByVal si As SessionInfo, ByVal globals As BRGlobals, ByVal api

Select Case args.FunctionType

Case Iz = ExtenderFunctionType.Unknown

Dim mydatacell As DataCell = BRapi.Finance.Data.GetDataCellsUsingMe
api.LogMessage(mydatacell.DataCellPk.GetMemberScript(api) + " - IsL
i ecuteDataMgmtBusinessRuleStep

microsoft.VisualBasic.Financial.
End Select

L s B S B S

See Business Rules for more information.

In-Solution Development

In-solution development is the process of creating OneStream Business Rules to deliver domain
specific solutions. This means that all Business Rules are executed within the application server
process space. The code written is only executed on the application servers where OneStream is

deployed.

Developing within the application server environment enables solution developers to focus on the
business problem instead of common programming concerns. The platform takes care of
managing connections, moving data between application tiers, and load balancing server

activities.

API Overview Guide

40

API Structure and Organization

In some cases, in-solution development is seen as a limitation because the developer is restricted
to coding within the application server tier. However, in most cases the efficiency and quality
gained by developing within the platform out ways any limitations imposed by coding at the
application server tier.

Custom Development

Custom development refers to stand alone application development that interacts with the
platform at the web server tier. OneStream provides a client tier API called from a custom
developed client application. The client APl is regularly used within the PowerShell script to
perform automation tasks.

Client API

The OneStream Client APl is intended to provide a set of methods that connect to the OneStream
environment, request data via a Cube View, and execute a Data Management Sequence. At first
glance, these three capabilities may seem limiting, but it is important to realize that a Data
Management Sequence can contain any combination of Data Management Steps and these
steps can consist of custom Business Rules. Client side developers can create Data
Management Sequences that execute Business Rules to accomplish server side tasks.
Developers can create sophisticated solutions that combine in-solution Business Rule logic with
client side custom solution logic.

Custom Web Development

The platform has the ability to display web pages within a custom Dashboard. This allows
completely custom web applications to surface within the OneStream solution. OneStream can
pass information about the user’'s POV and Workflow as URL Parameters enabling the custom
web application to act as part of an integrated solution.

With this capability, developers are free to create and incorporate any solution they can imagine.

API Overview Guide 41

Using System Tools

Using System Tools

System Business Rules

System Extender Business Rules are used in coordination with Azure Server Sets for elastic
scalability at the Azure Database and Server Sets level. Server and eDTU scaling can be
accomplished manually or via System Business Rules. If System Business Rules is selected as a
Scaling Type, then OneStream will call a user-defined System Extender Business Rule to
determine if scaling is needed. The user is responsible for implementing the scaling function and
returning the proper scaling object to OneStream. This can be accomplished by adding a System
Extender Business Rule and assigning it appropriately.

Under each Case statement, these rules and related Args and BRApis can be used to check the
current Server Set capacity, query metrics about a Server Set or Azure Database and impact the
volume of Server Sets or level of Azure Database deployed.

Refer to the Installation and Configuration Guide under Azure Database Connection Settings and
Server Sets for where to refer to these Business Rules. Example starting point of empty System
Extender Business Rule upon creation:

Namespace OneStream.BusinessRule.SystemExtender.ServerSet2
Public Class MainClass
Public Function Main(ByVal si As SessionInfo, ByVal globals As BRGlobals, ByVal api As Object, ByVal args As SystemExtenderArgs) As Object
Try
Select Case args.FunctionType
Case Is = SystemExtenderFunctionType.Unknown
Case Is = SystemExtenderFunctionType.GetDesiredServerSetCapacity
Case Is = SystemExtenderFunctionType.GetDesiredElasticDatabasePoolCapacity
Case Is = SystemExtenderFunctionType.GetDesiredExternalServerSetCapacity
End Select
Return Nothing
Catch ex As Exceptien
Throw ErrorHandler.loghirite(si, MNew XFException(si, ex))
End Try
End Function

End Class
End Namespace

Sample System Business Rule

Metrics data is passed to this function to help the user determine whether the server or database
needs to be scaled or not. Depending on what is being scaled, different metric data is passed in.
For server scaling, Environment metrics and Scale Set metrics are passed in to help determine
scaling. For database scaling, Environment metrics and SQL Server Elastic Pool metrics are
passed in to help determine scaling.

API Overview Guide 42

Using System Tools

Select Case args.FunctionType
Case Is = SystemExtenderFunctionType.Unknown
Case Is = SystemExtenderFunctionType.GetDesiredScaleSetCapacity
Dim systemExtenderScaleSetResult As New SystemExtenderScaleSetResult
systemExtenderScaleSetResult.Capacity = args.ScaleSetArgs.CurrentScaleSetCapacity
If (args.ScaleSetArgs.ScaleSetMetricValues.AvgCPUUtilization > 5@) Then
systemExtenderScaleSetResult.Capacity = args.ScaleSetArgs.CurrentScaleSetCapacity + 1
End If
Return systemExtenderScaleSetResult
Case Is = SystemExtenderFunctionType.GetDesiredElasticDatabasePoolCapacity
Dim systemExtenderSQLServerElasticPoolResult As New SystemExtenderSQLServerElasticPoolResult
systemExtenderSQLServerElasticPoolResult.AzureElasticPoolDTU = args.SQLServerElasticPoolArgs.DatabaseAndEPoolDTU.AzureElasticPoolDTU
If (args.SQLServerElasticPoolArgs[AzureElasticPoc1LevelHetricvalues.DTUConsumptionPercent > 90)
systemExtenderSQLServerElasticPoolResult.AzureElasticPoolDTU = 1600
End If
Return systemExtenderSQLServerElasticPoolResult

Case Is = SystemExtenderFunctionType.GetDesiredExternalScaleSetCapacity

End Select

Database

The Database screen allows System Administrators to view all of OneStream’s database tables
and provides tools for managing stored data and other information.

Tables

This gives read-only access to all data tables in the database and can be used for tasks such as
trying to debug issues without having access to the database, or deletion logging.

Tools

Database Tools allow System Administrators to manage the database.

Data Records

Enter a Member Filter in order to view data for the entire system.

API Overview Guide 43

Client API Listing

Client API Listing

This API provides a simple set of functions that have the ability to connect to OneStream’s server,
authenticate, execute OneStream Data Management Sequences, and perform basic data

retrieval.

Client API Object Hierarchy

¢ OneStreamClientAPI
° Logoninfo

° Type: Logoninfo

° Type: Sessioninfo

° Authentication
° Logon
° Parameters:
o string webServerUrl
o string userName
o string password
o XFClientAuthenticationType clientAuthenticationType

°o Return Value:

API Overview Guide 44

Client API Listing

° Logoninfo

o Logoff
° Parameters:
° None
° Return Value:

° None

° OpenApplication
° Parameters:
o string application
° Return Value:

° Logoninfo

° LogonAndOpenApplication
° Parameters:
o string webServerUrl
° string username
o string password
o string application

o XFClientAuthenticationType clientAuthenticationType

API Overview Guide

Client API Listing

° Return Value:

° Logoninfo

° EncryptPassword
° Parameters:
o string clearTextPassword
o XFClientAuthenticationType clientAuthenticationType
° Return Value:

o string

¢ DataManagement
o ExecuteSequence
° Parameters:
o string sequenceName
o string customSubstVarsAsCommaSeparatedPairs
° Return Value:

o DataMgmtResult

o ExecuteStep
o Parameters:
o string dataMgmtGroupName

o string stepName

API Overview Guide

46

Client API Listing

o string customSubstVarsAsCommaSeparatedPairs
° Return Value:

o DataMgmtResult

» DataProvider
o GetAdoDataSetForCubeViewCommand

° Parameters:
o string cubeViewName
° bool dataTablePerCubeViewRow
° CubeViewDataTableOptions dataTableOptions
o string resultDataTableName
o Dictionary<string, string> customSubstVars
° bool throwExceptionOnError

° Return Value:

o DataSet

o GetAdoDataSetForSglCommand
° Parameters:
° DblLocation dbLocation
o string xfExternalDBConnectionName
o string sqlQuery

o string resultDataTableName

API Overview Guide 47

Client API Listing

o Dictionary<string, string> customSubstVars
° bool throwExceptionOnError
° Return Value:

o DataSet

°o GetAdoDataSetForMethodCommand
°o Parameters:
o XFCommandMethodTypeld xfCommandMethodType

o string methodQuery

o

string resultDataTableName

o Dictionary<string, string> customSubstVars

[e]

bool throwExceptionOnError
° Return Value:

°o DataSet

PowerShell

PowerShell is an object-oriented programming language and interactive command line shell for
Microsoft Windows. It was designed to automate system tasks, such as batch processing, and
create systems management tools for commonly implemented processes. PowerShell includes
more than 130 standard command line tools for functions that formerly required users to create
scripts in VB, VBScript or C#.

PowerShell offers a variety of ways to automate tasks which include:

Cmdlets
Very small .NET classes that appear as system commands

Scripts
Combinations of cmdlets and associated logic

Executables
Standalone tools

API Overview Guide 48

Client API Listing

Instantiation of standard .NET classes

PowerShell integrates with the .NET environment and can also be embedded in other
applications. Over one hundred cmdlets are included and can be used separately or combined
with others to automate more complex tasks. Users can also create and share cmdlets.

PowerShell is built into Windows Operating Systems, where it is included as an optionally
installed feature. In addition, the Windows Task Scheduler can be used to automate PowerShell
script execution.

Using PowerShell Script Editor

To run PowerShell on Windows, Click left lower corner Windows icon start typing PowerShell and
open to begin.

There are two programs used to interact with PowerShell.

Windows PowerShell ISE

This is the integrated scripting environment or Script Editor. The editor allows users to type
PowerShell commands as well as edit and run PowerShell script files which are text files with a
ps1 extension.

Windows PowerShell
This program is a command line execution tool that looks like a DOS prompt. It allows a user to
run a command or a script file, but it does not perform editing/creating scripts as well.

Configuring PowerShell to use the OneStream Client API

Before PowerShell can be used to interact with the OneStream client API, three configuration
steps must be completed on each machine used for PowerShell script execution. First, execute a
PowerShell command enabling the execution of unsigned scripts. Second, create or alter the
PowerShell execution and IDE configuration files, so the script engine understands how to use
the .Net Framework v4.0Finally, OneStream Client APl must be installed on each machine
executing PowerShell scripts.

Allowing Execution of Unsigned Scripts
The first time this runs, the following line needs to run in a PowerShell command prompt. This will
allow PowerShell to run unsigned scripts created on the local computer.

set-executionpolicy remotesigned

API Overview Guide 49

Client API Listing

Configuration for .Net Framework v.4.0

In order to use the OneStreamClientApi with PowerShell, PowerShell needs to be configured to
use the .NET Framework v4.0. In order to do this, modify or create two configuration files if they
do not already exist.

Configuration File Folder
C:\Windows\System32\WindowsPowerShell\v1.0

File 1 (Config for Execution)
powershell.exe.config

File 2 (Config for IDE)
powershell_ise.exe.config

Required File Contents (Must be added to each configuration file)

<?xml version="1.0"?>
<configuration>
<startup uselLegacyV2RuntimeActivationPolicy="true">
<supportedRuntime version="v4.0.30319"/>
<supportedRuntime version="v2.0.50727"/>
</startup>
</configuration>

Refer to the following web resources for more information on this process.

http://stackoverflow.com/questions/2094694/how-can-i-run-powershell-with-the-net-4-runtime
http://tfl09.blogspot.com/2010/08/using-newer-versions-of-net-with.html.

Install OneStream Client API
The Client API Installation is used by PowerShell scripts to interact with the OneStream server.

Learning PowerShell

Microsoft provides extensive resources to help IT professionals get the most out of PowerShell.

Refer to the following web resource in order to learn more about scripting with PowerShell.
http://technet.microsoft.com/en-us/scriptcenter/powershell.aspx

API Overview Guide 50

http://stackoverflow.com/questions/2094694/how-can-i-run-powershell-with-the-net-4-runtime
http://tfl09.blogspot.com/2010/08/using-newer-versions-of-net-with.html
http://technet.microsoft.com/en-us/scriptcenter/powershell.aspx

Client API Listing

Using OneStream’s Client APl in a PowerShell Script

OneStream provides a client APl (OneStreamClientApi) specifically designed to enable
PowerShell scripts to call a OneStream function. This APl exposes functions for authentication
and Data Management. Over time, OneStream expanded the number of functions exposed to
this API. The Client APl component is installed as part of the OneStreamClientAPi.msi.

API Overview Guide

51

Event Listing

Event Listing

Event Handler Business Rules

WCF Event Handler

This allows direct interaction with the Microsoft Windows Communication Foundation which
means it listens to communication between the client and the web server. The rule will intercept

the communication, analyze it, and if certain criteria is met, it will run its logic. This is quite flexible

and has a variety of uses such as creating, reading, deleting, and updating different types of
objects in the system for users in a group or Transformation Rule changes. For example, a rule
can be created to e-mail an auditor about every metadata change as it happens.

Transformation Event Handler
This can be run at various points from Import through Load. Available operations:

StartParseAndTransForm
Initialize TransFormer
ParseSourceData
LoadDataCacheFromDB
ProcessDerivativeRules
ProcessTransformationRules
DeleteData
DeleteRuleHistory
WriteTransFormedData
SummarizeTransFormedData
CreateRuleHistory
EndParseAndTransForm
FinalizeParseAndTransForm
StartRetransForm
EndRetransForm

FinalizeRetransForm

API Overview Guide

52

Event Listing

StartClearData
EndClearData
FinalizeClearData
StartValidateTransForm
ValidateDimension
EndValidateTransForm
FinalizeValidateTransForm
StartValidateIntersect
EndValidatelntersect
FinalizeValidatelntersect
LoadIntersect
StartLoadIntersect
EndLoadIntersect

FinalizeLoadIntersect

Journals Event Handler
This can be run before, during, or after a Journal operation such as Submission, Approval, or
Post. Available operations:

SubmitJournal
Approvedournal
RejectJournal

PostJournal

UnpostJournal
StartUpdateJournalWorkflow
EndUpdateJournalWorkflow

FinalizeUpdateJournalWorkflow

API Overview Guide

53

Event Listing

Save Data Event Handler
This is run in order to track all save events in an application.

Forms Event Handler
This can be run before, during, or after an operation such as Form Save. Available operations:

SaveForm

CompleteForm

RevertForm
StartUpdateFormWorkflow
EndUpdateFormWorkflow
FinalizeUpdateFormWorkflow

Data Quality Event Handler
This can be run before, during, or after data quality events like Confirmation and Certification.
Available operations:

StartProcessCube
Calculate

Translate
Consolidate
EndProcessCube
FinalizeProcessCube
PreparelCMatch
StartlICMatch
PreparelCMatchData
EndICMatch
StartConfirm
EndConfirm
FinalizeConfirm

SaveQuestionResponse

API Overview Guide

54

Event Listing

StartSetQuestionairreState
SaveQuestionairreState
EndSetQuestionairreState
StartSetCertifyState
SaveCertifyState
EndSetCertifyState
FinalizeSetCertifyState

Data Management Event Handler

This can be run before or after a Data Management Sequence or Step runs. Available operations:

StartSequence
ExecuteStep
EndSequence

Workflow Event Handler
This can be run before or after a Workflow execution step. Available operations:

UpdateWorkflowStatus
WorkflowLock
WorkflowUnlock

Event Firing Sequences

OneStream fires a series of events when completing tasks via Event Handler Business Rules.

The example below explains how to read the table which provides the firing sequence when
running a specific task.

Script Type which
Executed Task correlates with the
Event Handler
Business Rule Type
;‘# Event Listing - ClearData
StartSequence DataManagement

Is Before Event: False Can Cancel: False Number of Inputs: 2

Input Name

args inputs(0). System Collections Generic Dictionary 2[[System Guid, mscorlib, Version=4.0.0.0, Culture=neutral,
args.inputs(1). OneStream. Shared. Wef. TaskActivityltem

API Overview Guide

55

Event Listing

Clear Cube Data

1z Before Event: Falsa Can Cancel: Fake Number of Inputs: 2
Tnput Name
args.inputs(0). System.Coll Generic Dictionary 2[[System Guid, mscorlib, Version=4.0.0.0, Culture=neutral,
args.inputs(1). OneStream Shared Wef TaskActivityTtem
1z Before Event: True Can Cancel: Fake Number of Inputs: 2
Input Name
args.inputs(0). OneS Finance Engine DataMgmtStepMetadatal
args inputs(1). OnaStream Shared Wef Task ActivityTtam
SaveCubeData SaveData
Iz Before Event: Truoe Can Cancel: True Number of Inputs: 0
Input Name
arge.inputs(0). SAVE DATA EVENT IS USED FOR DEBUG ONLY
pdateWorkflowStatus ‘Workflow
1= Before Event: True Can Cancel: True Number of Inputs: 7
Input Name

arge.inputs((0). OnaStream Shared Wef WorkflowInfo
argz.inputs(l). OneStream Shared Common StepClassificationTypes
arge.inputs(2). OneStream Shared Common WorkflowStatusTypes
arge.inputs(3). System String

args.inputs(4). System String

arge.inputs(3). System String

arge.inputs(§). System Guid

pdateWorkflowStatus ‘Workflow
Iz Before Event: Falke Can Cancel: True Number of Inputs: 7
Input Name

arge.inputs(0). OneStream Shared Wef WorkflowInfo
arge.inputs(l). OnaStream Shared Commeon StapClassificationTypes
args.inputs(2). OneStream Shared Common WorkflowStatusTypes

API Overview Guide

56

Event Listing

pdateWorkflowStatus ‘Workflow
Is Before Event: Fake Can Cancel: True Number of Inputs: 7
Input Name

arge inputs(3). System String
arge.inputs(4). System String
args.inputs(3). Svstem String
arge.inputs(6). System Guid

pdateWorkflowStatus ‘Workflow
Is Before Event: True Can Cancel: True Number of Inputs: 7
Input Name

arge.inputs{0). OnaStream Shared Wef WorkflowInfo
args.inputs(1). OnaStream Shared Common StepClassificationTypes
arge inputs(2). OnaStream Shared Commaon WorkflowStatusTypes
arge.inputs(3). System String

args.inputs(4). Svstem String

args.inputs(3). System String

args.imputs(f). System. Guid

pdateWorkflowStatus ‘Workflow
Iz Before Event: Fake Can Cancel: Truoe Number of Inputs: 7
Input Name

args.inputs(0). OnaStream. Shared Wef WorkflowInfo
arge.inputs(1). OnaStream Shared Common StepClassificationTypes

Shared. Common| Types

args.inputs(2). O
arge.imputs(3). Svstem String
arge.inputs(4). System String
args.imputs(3). System String
arge inputs(f). System Guid

[ExecuteStep DataManagement
Is Before Event: Fake Can Cancel: Fake Number of Inputs: 2
Input Name

5 Financa Engina DatahigmtStephiztadatal:

args.inputs(0). O

[ExecuteStep DataManagement
Is Before Event: Fale Can Cancel: Fake Number of Inputs: 2
Input Name
args inputs(1). OnsStream Shared Wef Task Activityltem
[EndSequence DataManagement
Is Before Event: False Can Cancel: Fake Number of Inputs: 2
Input Name
arzs.inguts(D). System Collections Generic Di *2[[System. Guid, mscorlib, Version=4.0.0.0, Culture=neutral,
arge.inpats(1). O Sharad Wef TazkA

API Overview Guide

57

Event Listing

Clear Stage Data

Lz Before Event: Falke Can Cancel: Fake Number of Inputs: 2
Input Name
arge.inputs(0). System.Collections Generic Dicti " 2[[System Guid, mecorlib, Version=4.0.0.0, Culture=neutral,
args inputs(1). O Sharad Wef TaskA
Iz Before Event: True Can Cancel: Fake Number of Inputs: 2
Input Name
arzs.inputsi0). O Financa Engine DataMg
args.inputs(1). OneSi Shared Wef TaskActivityT
SaveCubeData SaveData
Iz Before Event: True Can Cancel: True Number of Inputs: 0
Input Name
args.inputs(0). SAVE DATA EVENT IS USED FOR DEBUG ONLY
pdateWorkflowStatus ‘Workflow
Iz Before Event: True Can Cancel: True Number of Inputs: 7
Input Name

argz.inputs(0). OneStream Shared Wef WorkflowInfo
argz.inputs(1). OneStream Shared Common StepClassificationTypes
arge.inputs(2). OneStream Shared Common WorkflowStatusTypes
arze inputs(3). System String

args.imputs(4). Svstem String

args.inputs(3). System.String

args.inputs(6). System. Guid

pdateWorkflowStatus ‘Workflow
Iz Before Event: Fake Can Cancel: True Number of Inputs: 7
Input Name

arzs. inputs(()). OneStream Shared Wef Workflowlnfo
arzs. inputs(1). OneStream Shared Common StapClassificationTypes
args. inputs(2). OneStream Shared Common WorkflowStatus Types

API Overview Guide

58

Event Listing

pdateWorkflowStatus ‘Workflow
Iz Before Event: False Can Cancel: Trae Number of Inputs: 7
Input Name

args.inputs(3). System. String
arge.inputs(4). System String
argz.inputs(3). System String
argz.inputs(6). System. Guid

pdateWorkflowStatus ‘Workflow
Iz Before Event: Trae Can Cancel: True Number of Inputs: 7
Input Name

arge.imputs(0). OnaStream Shared Wef WorkflowInfo
argz.inputs(1). OneStream Shared Common StepClassificationTypes

argz.inputs(2). O Shared. Common” Types
arge.inputs(3). System String

args.inputs(4). System String

arge.inputs(3). System String

args.inputs(§). System Guid

pdateWorkflowStatus ‘Workflow
Iz Before Event: False Can Cancel: Trae Number of Inputs: 7
Input Name

argz.inputs(0). OneStream Shared Wef WorkflowInfo
arge.inputs(1). OnaStream Shared. Common StapClazzificationTypes
argz.inputs(2). OneStream Shared Common WorkflowStatusTypes
argz.inputs(3). System. String

arge.inputs(4). System String

args.inputs(5). System. String

arge.inputs(f). System Gud

[ExecuteStep DataManagement
Is Before Event: False Can Cancel: Fake Number of Inputs: 2
Imput Name
args.inputs(0). OneS Financa Engine DataMgmtStephatadatals

[ExecuteStep DataManagement
Is Before Event: False Can Cancel: Fake Number of Inputs: 2
Input Name

args inputs(1). OnsStream Shared Wef TaskActivityltam

[EndSequence DataManagement
Is Before Event: Fake Can Cancel: Fake Number of Inputs: 2
Input Name
arzs inputs(D). System. Collections. Generie Dictionary” 2[[System Guid, mscorlib, Version=4.0.0.0, Culturs=neutral,

args inputs(1). OnsStream Shared Wef TaskActivityltam

API Overview Guide

59

Event Listing

Execute Data Management

StartSequence DataManagement
Is Before Event: False Can Cancel: Falke Number of Inputs: 1
Input Name
args. inputs(0). System Collections Generic Dictionary’ 2[[System Guid, mscorlib, Version=4.0.0.0, Culture=neutral,
args inputs(1). OneStream Shared Wef TaskA ctivityTtem
Iz Before Event: True Can Cancel: Fake Number of Inputs: 2
Input Name
arge inputs(0). O Finance Engine D
args inputs(1). Onas Shared Wef TaskActivity
Iz Before Event: False Can Cancel: Fake Number of Inputs: 2
Input Name
arze inputs(0). O Financa Engina DataMg
args inputs(1). One$ Shared Wef TaskActivity]
Lz Before Event: False Can Cancel: Fake Number of Inputs: 1
Input Name
args.inputs(0). System Collections Generic Dictionary’ 2[[System Guid, mecorlib, Version=4.0.0.0, Culture=neutral,
argz.anputs(1). O Shared Wef TazkA

Import Data Connection

pdateWorkflowStatus ‘Workflow
Is Before Event: True Can Cancel: True Number of Inputs: 7
Input Name

args inputs(D). OneStream Shared Wef Workflowlnfo
args inputs(1). OnaStream Shared Common StapClassificationTypes

Shared. Common. Types

args.inputs(2). O
arge.inputs(3). System String
arge inputs(4). Svstem String
args.inputs(5). System String
arge inputs(6). Svstem Guid

pdateWorkflowStatus ‘Workflow
Is Before Event: False Can Cancel: True Number of Inputs: 7
Input Name

argz inputs(0). OneStream. Shared Wef WorkflowInfo
arge.inputs(1). OnaStream Shared Common StepClassificationTypes
arge. inputs(2). O Shared. Common.’ Types

args.inputs(3). System String
arge inputs(4). Svstem String
args.inputs(5). System String
arge inputs(§). System Guid

SaveCubeData SaveData
Iz Before Event: True Can Cancel: Troe Number of Inputs: 0
Inpui Name

argz inputs(0). SAVE DATA EVENT IS USED FOR DEBUG ONLY

StartloadIntersect Transformation
L: Before Event: Trae Can Cancel: Fake Number of Inputs: 5
Input Name

argz.inputs(0). OneStream. Shared. Wef LoadCubeProcessInfo
args.inputs(1). OnaStream Shared Wef WorkflowUnitPk
arge inputs(2). Svstem Boeolean

args.inputs(3). OneStream Shared Wef LoadDataMode

API Overview Guide

60

Event Listing

Startl.oadIntersect Transformation
I: Before Event: True Can Cancek Fake Number of Inputs: £
Taput Name

arzs. inputs(4). System Guid

[EndLoadIntersect Transformation
1z Before Event: Fake Can Cancel: Fake Number of Inputs: 5
Imput Name

argz.inputs(0). On=Stream Shared Wef LoadCubeProces:Info
argz.inputs(1). OneStream Shared Wef WorkflowUmitPk
args.inputs(2). System Boclean

args inputs(3). OneStream Shared Wef LoadDatzModa
args.inputsi4). System.Guid

pdateWorkflowStatus ‘Workflow
It Before Event: True Can Cancel: True Number of Inputs: 7
Input Name

args. inputs(0). OneStream Shared Wef WorkflowInfo
args. inputs(1). OneStream Shared Common StepClassificationTypes

args.inputs(2). O Shared Common.’ Types
arge.imputs(3). System String
args.inputs(4). System. 3ring
arzs.inputs(5). System. String
arzs inputs(f). System Guid

pdateWorkflowStatus ‘Workflow
Iz Before Event: Fale Can Cancel: Trae Number of Inputs: 7
Input Name

argz.inputs(0). OneStream.Shared Wef WorkflowInfo
args.inputs(1). OneStream Shared Common StepClassificationTypes
args inputs(2). OnaStream Shared Common WarkflowStatusTypes
args.inputs(3). System.String

argz.inputs(4). System String

arge.inputs(3). System. Bring

pdateWorkflowStatus Workflow
Iz Before Event: Fale Can Cancel: Troe Number of Inputs: 7
Input Name

arzs inputs(6). System Guid

[Finalizel oadIntersect Transformation
1s Before Event: Fale Can Cancel: Fake Number of Inputs: 5
Input Name

args.inputs(0). OneStream Shared WefLozdCubeProcessInfo
args.inpuis(1). OneStream. Shared Wef WorkflowUnitPk
args.inputs(2). System Boolean

args inputs(3). OneStream Shared Wef LozdDztalMode
args.inputs(4). System. Guid

API Overview Guide

61

Event Listing

Import Excel File

StartParseAndTransform Transformation
1s Before Event: Fake Can Cancel: Fake Number of Inputs: 4
Input Name
arzz inputs(0). O Stage Engine T

arge.inputs(1). Svstem String
argz.inputs(2). OneStream Shared Common TransformLoadMethodTypes
arge inputs(3). System. Guid

[InitializeTransformer Transformation
1= Before Event: True Cam Cancel: True Number of Inputz: 4
Tnput Name
argz.inputsi0). On=3 Stage.Engine T

args.inputs(l). System String
arge inputs(2). O Shared Common Ti dMethodTypes

arge.inputs(3). Svstem. Guid

InitializeTransformer Transformation
1z Before Event: Fake Can Cancel: True Number of Inputs: 4
Input Name
arzz inputs(0). OnaS Stage Engine T

arge.inputs(1). Svstem. String
argz.inputs(2). OneStream Shared Common TransformLoadMethodTypes
arge inputs(3). System. Guid

[ParseSourceData Transformation
1z Before Event: True Can Cancel: Fake Number of Inputz: 4
Tnput Name
argz.inputsi0). On=3 Stage Engine.T:

argz.inputs(1). System String
arge inputs(2). OnaStream Shared Common TransformLoadMethodTypes
arge.inputs(3). Svstem. Guid

API Overview Guide

62

Event Listing

[InitializeExcelRangeLayout Transformation
Iz Before Event: True Can Cancel: Falze Number of Inputs: 2
Input Name
args.inputs((). OnaStream Stage Engine Parser
argz.inputs(1). O Shared Enzine ontent
[InitializeExcelRangeLayout Transformation

Ls Before Event: Fake Can Cancel: Fake Number of Inputs: 3
Input Name
arge.inputs(0). OnaStream.Stage Engine Parser
args.inputs(1). OnaS Shared Engine. StageRanzeContant
[ParseSourceData Transformation
1z Before Event: Fake Can Cancel: Faka Number of Inputs: 4
Input Name
arzz.inputs(0). Ons=S Stage Engine T
args inputs(1). System String
arge.inputs(2). O Shared Common T dMathodTypes
arge.inputs(3). System Guid
rocessDerivedRules Transformation
1s Before Event: True Can Cancel: Faka Number of Inputs: 4
Input Name
arzz.inputs(0). Ons=S Stage Engine T

arge.inputs(l). System String
args.inputs(2). OneStream Shared Common TransformLoadMethod Types

args inputs(3). System Guid

rocessDerivedRules Transformation
Is Before Event: Fake Can Cancel: Falze Number of Inputs: 4
Input Name
args.inputs(0). OnaS Stape Engine T

arge.inputs(l). System String
args.inputs(2). OneStream Shared Common TransformLoadMethod Types

API Overview Guide

Event Listing

[ProcessDerivedRules Transformation
Iz Before Event: Fake Can Cancal: Fake Number of Inputs: 4

Imput Name
arge.inputs(3). System Guid

[ProcessTransformRules Transformation
Iz Before Event: True Can Cancel: Fake Number of Inputa: 4

Imput Name

arzs.inputs(0). OnaS Stage Engine T

args.inputs(1). System. String
args.inputs(2). O Shared. Common. T diethodTypes

arzs inguts(3). System Guid

[ProcessTransformRules Transformation
Is Before Event: Fake Can Cancel: Fake Number of Inputs: 4

Input Name

arzs.inputs(0). OnsS Stage Engine. T

arge.inputs(1). System Strng
argz.inputs(2). OneStream Shared Common TransformLoadMethod Types
arge.imputs(3). System Guid

[DeleteData Transformation
Iz Before Event: Trae Can Cancel: Fake Number of Inputs: 4
Input Name
arge.imputs(0). O Stape Enzime T

args.inputs(1). System String
args.inputs(2). O Shared. Common.T dMathodT

arzs inputs(3). System Guid

[DeleteData Transformation
Ia Before Event: Fake Can Cancel: Fake Number of Inputa: 4
Input Name
;rgg_inpug(ﬂ)_ OnaSf Staga Engme.T.

argz.inputs(l). System. String

API Overview Guide

64

Event Listing

[DeleteData Transformation
Iz Before Event: Fake Can Cancel: Fake Number of Inputs: 4
Input Name

arzs. inputs(2). OneStream Shared Comumon TransformLoadMethodTypes
args. inputs(3). Systam Guid

Iz Before Event: True Can Cancel: Fale Number of Inputs: 4
Input Name
args.inputs(0). OneS Stage Engine T

args.imputs(1). System String
argz.inputs(2). O Shared Common T dMethodTypes

args.imputs(3). Svstem. Guid

[DeleteRuleHistory Transformation
1s Before Fvent: False Can Caneel: False Number of Inputs: 4
Input Name
args.imputs(0). O Stage Engine. T

args. inputs(1). System String
args. inputs(2). OneStream Shared Common TransformLoadMethodTypes
arzs. inputs(3). System Guid

WriteTransformedData Transformation
Iz Before Event: True Can Cancel: Fale Number of Inputa; 4
Input Name
args.inputs(0). OneS Stage Engine T

args inputs(1). System String
arzs.inputs(2). O Sharad Common.T: dMathodTypes

args inputs(3). System Guid

WriteTransformedData Transformation
I Before Event: Fake Can Cancel: Fake Number of Inputs: 4
Input Name
arzs inputs((). O Stage Engime T

API Overview Guide

65

Event Listing

teTransformedData
L Before Event: Fake Can Camcel: Fake Number of Inputz:

ransformat
4

Input Name

args.imputs(l). System.String

arge.inputs(2). OnaStream Shared Common TransformLoadMethodTypes
args.imputs(3). System. Guid

SummarizeTransformedData Transformation

Iz Before Event: True Can Cancel: Falee Number of Inputs: 4
Input Name
args.imputs(0). O Stage Engine. T

arge.inputs(l). System String
arge.inputs(2). OnaStream Shared Common TransformL oadMethedTypes
args.imputs(3). System. Guid

SummarizeTransformedData Transformation

Iz Before Event: False Can Cancel: Falee Number of Inputs: 4
Input Name
args.imputs(0). O Stage Engine. T

arge.inputs(l). System String
arge inputs(2). OnaStream Shared Common TransformLoadMethodTypes
arge.imputs(3). System. Guid

CreateRuleHistory Transformation

Iz Before Event: True Can Cancel: Falze Number of Inputs: 4
Input Name
args.imputs(0]. O Stage Enzine. T

argz.inputs(l). System String
arge inputs(2). OnaStream Shared Common TransformLoadMethodTypes
arge.imputs(3). System. Guid

CreateRuleHistory Transformation

I; Before Event: False Can Cancel: False Number of Inputs: 4

Input Name

API Overview Guide

66

Event Listing

“reateRuleHistory Transformation

Iz Before Event: Fake Can Cancel: Fale Number of Inputs: 4
Input Name
args.inputs(0). OnaS Stage Engine.T:

arge.imputs(1). Svstem String
args.inputs(2). OnaStream Shared Common TransformLoadMethodTypes
arge.amputs(3). Svstem Gumd

[EndParseAndTransform Transformation
Is Before Event: Fake Can Cancel: Fake Number of Inputs: 4
Input Name
argz.inputs(0). O Stage.Engine.T;

args.inputs(1). System String
args.inputs(2). O Shared Common. Tt dilethodTypes

args.inputs(3). System Guid

pdateWorkflowStatus Workflow

Is Before Event: True Can Cancel: Trae Number of Inputs: 7

Input Name

argz.inputs(0). On=Stream Shared Wef WorkflowInfo
arge.inputs(1). OmeStream.Shared Common StapClaszificationTypes
args.inputs(2). OnaStream Shared Common WorkflowStatusTypes
arge.imputs(3). Svstem String

args.inputs(4). System String

args inputs(3). System String
args.inputs(6). System Guid

pdateWorkflowStatus Workflow

I: Before Event: Falke Can Cancel: True Number of Inputs: 7

Input Name

args.inputs(0). OneStream Shared Wef WorkflowInfo
arge.imputs(1). OneStream.Shared Common StapClaszsificationTypes
args.inputs(2). OneStream Shared. Common WorkflowStatusTypes
arge.inputs(3). System String

pdateWorkflowStatus ‘Workflow
Is Before Event: Fake Can Cancel: True Number of Inputs: 7
Input Name

arze inputs(4). System String
arge.inputs(3). System String
args.inputs(f). System. Guid

[FinalizeParseAndTransform Transformation
Is Before Event: Fake Can Cancel: Fake Number of Inputs: 4
Input Name
args.inputs(0). OnaS Stage Engina. T

args inputs(1). System String

args.inputs(2). O Shared Common Ti dh[ethodTypes

args.inputs(3). System Guid

API Overview Guide

67

Event Listing

Import Text File

StartParseAndTransform Transformation
Iz Before Event: Fake Can Cancel: Fake Number of Inputs: 4
Input Name
arzs inputs(). O Stage Engme T

arge.inputs(1). System String
args.inputs(2). OnaStream Shared Common TransformLoadMethodTypes
args.inputs(3). System Guid

[InifializeTransformer Transformation
I Before Event: True Can Cancel: True Number of Inputs: 4
Input Name
arge.imputs(0). O Stage Engine. T)

argz.inputs(l). System.String
args.inputs(2). OnaStream Shared Common TransformLoadMethodTypes
args.inputs(3). System Guid

[InifializeTransformer Transformation
1= Before Event: Fake Can Cancel: True Number of Inputs: 4
Input Name
arge.imputs(0). O Stage Engine. T)

args.inputs(1). System String
args.inputs(2). OnsStream Shared Common TransformLoadMethodTypes
args inputs(3). System Guid

[ParseSourceData Transformation
1= Before Event: True Can Cancel: Fake Number of Inputs: 4
Input Name
arge.imputs(0). O Stage Engine. T,

args.inputs(1). System String
args.inputs(2). OnsStream Shared Common TransformLoadMethodTypes
arzs inputs(3). System Guid

API Overview Guide

68

Event Listing

[ParseSourceData Transformation
Iz Before Event: False Can Cancel: Fake Number of Inputs: 4
Input Name
args.inputs(0). O Stage Engine. T:

args.inputs(1). System String
args.inputs(2). OnaStream Shared Common. TransformL oadMethod Types
args.inputs(3). System Guid

[ProcessDerivedRules Transformation
Iz Before Event: True Can Cancel: Fale Number of Inputs: 4
Input Name
args.inputs(0). OneSi Stage Engine. T

args.inputs(1). System String
args inputs(2). OneStream Shared Common TransformloadMethod Types
args.inputs(3). System. Guid

[ProcessDerivedRules Transformation
s Before Event: Fake Can Cancel: Fake Number of Inputs: 4
Input Name

5 Stage Engme T:

args.inputs(0). O
arge.inputs(l). System String
arge.inputs(2). O Shared Common. T dMethodT

arzs inputs(3). System Guid

[ProcessTransformRules Transformation
1z Before Event: True Can Cancel: Fake Number of Inputs: 4
Input Name
argz. inputs(0). On Staze Engine T

args.inputs(1). System String
args.inputs(2). OneStream. Shared Common TransformLoadMethodTypes
args.inputs(3). System Guid

[ProcessTransformRules Transformation
I: Before Event: Fake Can Cancal: Fake Number of Inputs: 4
Tnput Name
arzs.inputs(0). On=S Stage Engine.T:

args.inputs(1). Svstem String
args.inputs(2). OneStream Shared Common TransformLoadMethodTypes
args.inputs(3). Svstem Gumd

[DeleteData Transformation
Iz Before Event: True Can Cancel: Fake Number of Inpuiz: 4
Input Name
args.inputs(0). O Stage Engine T

arzs.inguts(1). System String

args.inputs(2). O Shared Common T dMethod Types

arzs. inputs(3). System Guid

[DeleteData Transformation
Iz Before Event: Fake Can Cancel: Falke Number of Inputs: 4
Imput Name
arge inputs(0). OnaS Stage Fngine T

args.inputs(l). System. String
arge.inputs(2). OnaStream Shared Common TransformloadMethedTypes
args.inputs(3). Svstem. Guid

Iz Before Event: True Can Cancel: Fale Number of Inputs: 4
Tnput Name
args.inputs(0). OnsS Stage Engine T

args.inputs(1). System String

args.inputs(2). O Shared Common. T dhlethodTypes

args. inguts(3). System Guid

API Overview Guide

69

Event Listing

[DeleteRuleHistory Transformation
Is Before Event: Fake Can Cancel: False Number of Inputs: 4
Input Name
argz.inputs((). Ona$ Stage Engine. T

arzs inputs(1). Systam String
args inputs(2). OnsStream Shared Common TransformLoadMethod Types
arzs inputs(3). Systam Guid

WriteTransformedData Transformation
Is Before Event: True Can Cancel: Fake Number of Inputs: 4
Input Name
arzs.inputs((). OnsS Staze Engime T

arzs inputs(1). Systam String
args inputs(2). OnsStream Shared Common TransformLoadMethod Types
arzs inputs(3). Systam Guid

WriteTransformedData Transformation
I: Before Event: Fake Can Cancel: Fale Number of Inputs: 4
Input Name
argz.inputs((). Ona$ Stage Engine. T

arge.inputs(1). Svstem String
argz.inputs(2). OneStream Shared Commox TransformLoadMethod Types
arge.imputs(3). Svstem Gud

SummarizeTransformedData Transformation

L Before Event: True Can Cancel: Fake Number of Inputs: 4
Input Name
args.inputs(0). OneS Stage Engine.T

arge.inputs(1). Svstem String
argz.inputs(2). OneStream Shared Commox TransformLoadMethod Types
arge imputs(3). Svstem Guid

SummarizeTransformedData Transformation

Iz Before Event: Fake Can Cancel: Fake Number of Inputs: 4
Input Name
args inputs(0). OneS| Stage Engine.T:

argz.inputs(1). System String
arge inputs(2). OneStream Shared Common TransformloadMethodTypes
argz.inputs(3). System. Guid

“reateRuleHistory Transformation

Iz Before Event: Trone Can Cancel: Fake Number of Inputs: 4
Input Name
arge.inputs(0). O Stage Engme. T

argz.inputs(1). System. String
args.inputsi2). O Shared. Common. T diethodTypes

arzs inputs(3). System Guid

“reateRuleHistory Transformation

Iz Before Event: False Can Cancel: False Number of Inputs: 4
Input Name
arge.inputs(0). O Stage Enzime T

arge.inputs(1). System. String
args.inputs(2). O Shared Common. T1 dMethodTypes

arge inputs(3). System Guid

[EndParseAndTransform Transformation

Is Before Event: Fake Can Cancel: Fake Number of Inpuis: 4
Input Name
args.inputs(0). OnsS Stage Engine.T

arge inputs(1). System String
argz.inputs(2). OneStream Shared Common. TransformLoadMethodTypes
arge.inputs(3). System Guid

API Overview Guide

70

Event Listing

pdateWorkflowStatus ‘Workflow
Is Before Event: Trae Can Cancel: True Number of Inputs: 7
Input Name

arge.inputs(0). OnaStream Shared Wef WorkflowInfo
argz.inputs(1). OneStream Shared Common StepClassificationTypes

args.inputs(2). O Shared. Common.” Types
arge.inputs(3). System String
args.inputs(4). System Siring
arge inputs(5). System String
args.inputs(6). System Guid

pdateWorkflowStatus Workflow
Is Before Event: Fake Can Cancel: True Number of Inputs: 7
Input Name

args.inputs(0). OneStream Shared Wef Workflowlnfo
arge.inputs(l). OnaStream Shared Common StapClaszificationTypes
args.inputs(2). OneStream Shared Common WorkflowStatusTypes
argz.inputs(3). System.String

arge inputs(4). System String

args.inputs(3). System String

arge.inputs(6). System Gmd

[FinalizeParseAndTransform Transformation

Iz Before Event: Fake Can Cancel: Fale Number of Inputs: 4

Input Name

argz.inputs(0). Ona’ Stage Engne. T

args.inputs(l). System String

args.inputs(2). O Shared. Common.Ts dMathodTypes

args inputs(3). System Guid

Process Form

“ompleteForm Forms

Iz Before Event: True Can Cancel: Fake Number of Inputs: 4

Input Name
argz. inputs(0). OnaStream. Shared Wef HFFormEx
args.inputs(1). System Boclean

arzs inputs(2). System Boolean

argz.mputs(3). O Shared Common.’ Types
“ompleteForm Forms
Is Before Event: Fake Can Cancel: Fake Number of Inputs: 4
Input Name

argz.mputs(0). OnaStream. Shared Wef HFFormEx

args.inputs(1). System Boclean

args.inputs(2). System Boolean

args.inputs(3). OneStream Shared Common WorkflowStatusTypes

“ompleteForm Forms

I: Before Event: True Can Cancel: Falee Number of Inputs: 4

Input Name
args.inputs((). OneStream Shared Wef XFFormEx
args.inputs(1). System Boolean

argz.mputs(2). Svstem Boolean
args.inputs(3). OneStream Shared Common WorkflowStatusTypes

“ompleteForm Forms

L Before Event: Fake Can Cancel: False Number of Inputs: 4

Input Name
args.inputs((). OneStream Shared Wef XFFormEx
args.inputs(1). System Boolean

args inputs(2). System Boolean
args inputs(3). OnaStream Shared Common WorkflowStatus Typas

API Overview Guide

Event Listing

riUpdateFormWorkflow Forms
Is Before Event: Fake Can Cancel: False Number of Inputs: 3
Input Name

arge inputs(ll). OnaStream Shared Wef InputF orm:Proces:Info
arge.inputs(1). OneStream Shared Wef WorkflowUnitPk
argz.mputs(2). Svstem Boolean

[EndUpdateFormWorkflow Forms
Iz Before Event: Fake Can Cancel: Fake Number of Inputs: 3
Input Name

arge.inputs(0). OnaStream Shared Wef InputF orm:Proces:Info
args.inputs(1). OnaStream Shared Wef WorkflowUnitPk
args.inputs(2). System Boclean

IpdateWorkiflowStatus ‘Workilow
Is Before Event: True Can Cancel: Trae Number of Inputs: 7
Input Name

argz.inputs(0). OneStream Shared Wef Workflowlnfo

arge inputs(1). OnaStream Shared Common StepClassificationTypes
arge.inputs(2). OneStream Shared. Common WorkflowStatusTypes
args.imputs(3). Svstem Siring

arge.inputs(4). System String

arge.imputs(3). Svstem Siring

arge.inputs(f). System Guid

JpdateWorkflowStatus Workflow
Iz Before Event: Fake Can Cancel: True Number of Inputs: 7
Input Name

arge.inputs(0). OmaStream Shared Wef WorkflowInfo
arge.inputs(1). OnaStream Shared Common StepClassificationTypes

args.imputs(2). O Shared. Common.” Typas
arge.inputs(3). System String
args.imputs(4). System String
arge.inputs(3). System String

IpdateWorkflowStatus ‘Workflow
Is Before Event: False Can Cancel: True Number of Inputa: 7
Input Name

arzs inputs(f). System Guid

API Overview Guide

72

Event Listing

Process Journal

" 7
SubmitJournal
1z Before Event: True

Can Cancel: Fake

Journals
Number of Inputs: 2

Input Name

arge inputs(0). Svstem. Guid

arzs inguts(1). OneStream Shared Wef JournalEx

SubmitJournal
s Before Event: Fake

Can Cancel: Fake

Journals
Number of Inputs: 2

Input Name

arge inguts(D). System Guid

arge.inputs(1). OneStream Sharad Wef JournalEx

[FinalizeSubmitJournal
Iz Before Event: Fale

Can Cancel: Fake

Journals
Number of Inputs: 1

Input Name

arzs inguts(D). System Guid

pproveJournal
I Before Event: True

Can Cancel: Fake

Journals
Number of Inputs: 2

Input Name

arge inguts(D). System Guid

arge.inputs(1). OneStream Sharad Wef JournalEx

pproveJournal
Iz Before Event: Fake

Can Cancel: Fake

Journals
Number of Inputs: 2

Input Name

arzs inguts(D). System Guid

arge inguts(1). OneStream Shared Wef JournalEx

[FinalizeApproveJournal
Is Before Event: Fake

Can Cancel: Fake

Journals
Number of Inputs: 1

Input Name

arge inputs(0). Svstem. Guid

API Overview Guide

73

[PostJournal Journals
Ls Before Event: True Can Cancel: Fake Number of Inputs: 2
Input Name

args.inputs(0). System Guid
argz.inputs(l). OnsStream Shared Wef JournalEx

o
=
a
Q
=
&
=]
g

SaveData
I: Befors Event: True Can Cancel: True Number of Inputs: 0

Input Name

args inputs(0). SAVE DATA EVENT I§ USED FOR DEBUG ONLY

IpdateWorkflowStatus ‘Workflow
Is Before Event: True Can Cancel: Trae Number of Inputs: 7

Input Name

args.inputs(0). OneStream Shared Wef WorkflowInfo
argz.inputs(1). OnsStream. Shared. Common StapClaszificationTypes
args.inputs(2). OneStream Shared Common WorkflowStatusTypes
argz.inputs(3). System String

args.inputs(4). System String

argz.inputs(3). System. String

arge inputs(6). System Guid

JpdateWorkflowStatus ‘Workflow

L Before Event: Fake Can Cancel: True Number of Inputs: 7

Input Name

args.inputs(0). OneStream Shared Wef WorkflowInfo
argz.inputs(1). OnsStream. Shared. Common StapClaszificationTypes
args.inputs(2). OneStream Shared Common WorkflowStatusTypes
argz.inputs(3). System String

args.inputs(4). System String

argz.inputs(3). System. String

arge inputs(§). System Guid

[PostJournal Journals
Iz Before Event: Falke Can Cancel: Fake Number of Inputs: 2

Input Name
args.inputs(0). System Guid

args inputs(1). OnaStream Shared Wef JournalEx

Iz Before Event: Falke Can Cancel: Fake Number of Inputs: 1
Input Name
args.inputs((). System Guid
StartUpdateJournalWorkflow Journals
Is Before Event: False Can Caneel: Fale Number of Inputa: 3
Input Name
args inputs(). OneStream Shared Wef InputlournalsProcesslaf:

arge.inputs(l). OneStream Shared Wef WorkflowUnitPk
arge.inputs(2). System Boolean

[EndUpdateJournalWorkflow Journals
Iz Before Event: Falke Can Cancel: Falke Number of Inputs: 4
Input Name

args inputs(0). OneStream Shared Wef InputfournalsProcesslnfo

arzs inputs(1). OneStream Shared Wef WorkflowUnitPk

args.inputs(2). System Boolean

args inputs(3). OneStream Shared Wef JournalsAnd TemplatesForWorkflow

IpdateWorkflowStatus Workflow
Is Before Event: True Can Cancel: True Number of Inputs: 7
Input Name

args.inputs((). OneStream Shared Wef Workflowlnfo
args inputs(1). OneStream Shared Common StapClassificationTypas

arge inputs(2). O Shared Common Types
args.inputs(3). System String
args.inputs(4). System String

API Overview Guide

74

Event Listing

pdateWorkflowStatus Workflow
Iz Before Event: True Can Cancel: Troe Number of Inputs: 7
Input Name

argz.imputs(3). System Sfring
args.inputs(6). System Guid

pdateWorkflowStatus Workflow
Iz Before Event: Fake Can Cancel: Troe Number of Inputs: 7
Inpat Name

args.inputs((). OmeStream. Shared Wef WorkflowInfo

args inputs(1). OneStream Shared Common StepClassificationTypes
args.inputs(2). OneStream Shared Common WorkflowStatusTypes
args inputs(3). System String

args.inputs(4). System String

args inputs(3). System String

args.inputs(6). System Guid

[FinalizeUpdateJournalWorkflow Journals
Iz Before Event: Fake Can Cancel: Falke Number of Inputs: 3
Input Name
argz.inputs(0). O Shared Wef Input]

args.inputs(1). OneStream Shared Wef WorkflowUnitPk
argz.inputs(2). Svstem Boclean

Process Workflow

StartValidateTransform Transformation
Iz Before Event: Fake Can Cancel: Fake Number of Inputs: 4
Tnput Name
args.inputs(0). OnsStream Sharad Wef ValidationTransformationP Inf

args.inputs(1). OneStream Shared Wef WorkflowUnitPk
arge.imputs(2). System Boolean
arge.inputs(3). System Guid

7alidateDimension Transformation
Iz Before Event: True Can Cancel: Fake Number of Inputs: §
Imput Name
argz.inputs(0). OneStream Sharad Wef WorkflowUnitPk
args.inputs(1). OnsS Shared. Wef DimensionValidationl

argz.inputs(2). System. String
arge inputs(3). System Guid
argz.inputs(4). System Guid

/alidateDimension Transformation
Iz Before Event: Fake Can Cancel: Fake Number of Inputs: 5
Input Name
args inputs(0). OnsStream Sharad Wef WorkflowUnitPk
args.inputs(1). OnsS Shared. Wef DimensionValidationl

arge.imputs(2). System String
arge.inputs(3). System Guid
args.inputs(4). System Guid

Is Before Event: Trae Can Cancel: Fake Number of Inputs:
Input Name
arzs.inputs(0). OnsStream, Shared Wef WorkflowUnitPk
arzs.inputs(1). O Shared Wef DimensionValidati

argz.inputs(2). System String
argz.inputs(3). System Guid
argz.inputs(4). System. Guid

API Overview Guide

Event Listing

/alidateDimension Transformation
Iz Before Event: Fake Can Cancel: Fake Number of Inputs: 5
Tnput Name

args inputs(0). OnsStream, Shared Wef WorkflowUnitPk
Stream Shared Wef DimensionValidation]

args.inputs(1). O
arge.imputs(2). System String
arge.inputs(3). System Guid
args.inputs(4). System Guid

Iz Before Event: Troe Can Cancel: Fake Number of Inputs: §
Input Name
arzs.inputs(D). OnsStream Shared Wef WorkflowUnitPk
arzs.inputs(1). O Shared Wef DimensionValidati

arge.inputs(2). System String
argz.inputs(3). System Guid
argz.inputs(4). System. Guid

Iz Before Event: False Can Cancel: Fake Number of Inputs: §
Input Name
argz.inputs(0). OneStream Shared Wef WorkflowUnitPk
args.inputs(1]. O Shared. Wef Di ionVali

arge.inputs(2). System String
args.inputs(3). System Guid
argz.inputs(4). System Guid

Iz Before Event: Traoe Can Cancel: Fake Number of Inputs: 5
Input Name
args.inputs(0). OneStream Shared Wef WorkflowUnitPk
arge.imputs(1). O Shared. Wef D W

argz.inputs(2). System String
argz.inputs(3). System. Guid

TalidateDimension Transformation
1z Before Event: Troe Can Cancel: False Number of Inputs: 5§
Input Name

args inputs(4). System Guid

/alidateDimension Transformation
Iz Before Event: Fale Can Cancel: Fale Number of Inputs: 5§
Input Name

argz.inputs(0). OneStream Shared Wef WorkflowUnitPk
args.inputs(1). OneStream Shared Wef DimensionValidationInfe
args.inputs(2). System. String

argz.inputs(3). System Guid

args.inputs(4). System Guid

/alidateDimension Transformation
Iz Before Event: Trae Can Cancel: Fale Number of Inputs: 5§
Input Name

argz.inputs(0). OneStream Shared Wef WorkflowUnitPk

argz inputs(1). OnaStream Shared Wef DimensionValidationInfo
args.inmputs(2). System String

argz.inputs(3). System Guid

args.inputs(4). System Guid

/alidateDimension Transformation
Iz Before Event: Fale Can Cancel: Fale Number of Inputs: 5§
Input Name

argz.inputs(0). OneStream Shared Wef WorkflowUnitPk

argz inputs(1). OnaStream Shared Wef DimensionValidationInfo
args.inmputs(2). System String

args.inpuis(3). System. Guid

args.inputs(4). System Guid

API Overview Guide

76

Event Listing

Iz Before Event: True Can Cancel: Fake Number of Inputs: 5
Input Name
arge.inputs((). OnaStream Shared Wef WorkflowUnitPk
argz.inputs(1). O Shared Wef.D: ionV i

arge inputs(2). System String
args.inputs(3). System Guid
args.inputs(4). System Gud

Iz Before Event: Fale Can Cancel: False Number of Inputs: &
Input Name
args.inputs(D). OnsStream Shared Wef Workflow UnitPk
args.inputs(1). O Shared Wef D: ionV i

args. inputs(2). System String
args. inputs(3). System Guid
arzs inputs(4). System Guid

Lz Before Event: True Can Cancel: Falze Number of Inputs: 5
Input Name
args.inputs(D). OnsStream Shared Wef Workflow UnitPk
args.inputs(1). O Shared Wef D ionV i

args.inputs(2). System String
args.inputs(3). Svstem Guid
arge.inputs(4). System Guid

Iz Before Event: Fake Can Cancel: Fake Number of Inputs: 5
Input Name
args.inputs((). OneStream Shared Wef WorkflowUnitPk
args.imputs(1). O Shared Wef D W

args.inputs(2). System String
args.inputs(3). System Gud

7alidateDimension Transformation
Is Before Event: Fake Can Cancel: Fake Number of Inputs: §
Input Name

args inputs(4). System Guid

Iz Before Event: True Can Cancel: Fake Number of Inputs: 5
Input Name
args.inputs(0). OnaStream Shared Wef WorkflowUnitPk
argz.anputs(1). O Shared. Wef D W

args.inputs(2). System String
arge inputs(3). System Guid
argz.inputs(4). System. Guid

7alidateDimension Transformation
Is Before Event: Fake Can Cancel: Fake Number of Inputs: §
Input Name

args.inputs(0). OneStream Shared Wef WorkflowUnitPk

arge inputs(1). OnaStream Sharad Wef DimensionValidationInfo
argz.inputs(2). System String

arge inputs(3). System Guid

arge inputs(4). Svstem Guid

7alidateDimension Transformation
L: Before Event: Trae Can Cancel: Fake Number of Inputs: 5
Input Name

args.inputs(0). OneStream Shared Wef WorkflowUnitPk
arge.inputs(1). OnaStream Shared Wef DimensionValidationInfo
arge inputs(2). Svstem String

args.inputs(3). System Guid

argz.inputs(4). System Gmd

API Overview Guide

77

Event Listing

/alidateDimension Transformation
Iz Before Event: Fake Can Cancel: Fake Number of Inputs: 5§
Inpat Name

args.inputs(0). OnaStream. Shared Wef WorkflowUnitPk

args.inputs(1). One$ Shared Wef DimensionValidati

arge.inputs(2). System String
arge.mputs(3). System Gmd
arge.inputs(4). System Guid

7alidateDimension Transformation
Iz Before Event: True Can Cancel: Fake Number of Inputs: §
Input Name

args.inputs(0). OmeStream Shared Wef WorkflowUnitPk

args.inputs(1). One$ Shared Wef DimensionValidati

args.imputs(2). System String
arge inputs(3). System Guid
arge.inputs(4). System Guid

/alidateDimension Transformation
Iz Before Event: Fake Can Cancel: Fake Number of Inputs: 5§
Input Name

args.inputs(0). OmeStream Shared Wef WorkflowUnitPk

args.inputs(1). OneStream Shared Wef DimensionValidati

args.inputs(2). Svstem String
arge.inputs(3). System Guid
args.imputs(4). System. Guid

7 alidateDimension Transformation
Iz Before Event: True Can Cancel: Fake Number of Inputs: 5§
Input Name

argz.mputs(0). OneStream Shared Wef WorkflowUmitPk

ares. inputs(1). OneStrezm Shared Wef DimensionValidati

arge.imputs(2). Svstem String
arge.inputs(3). System Guid

YalidateDimension
Iz Before Event: True Can Cancel: Fake

Transformation
Number of Inputs: §

Input Name

argz.inputs(4). Svstem Guid

YalidateDimension

Transformation

Iz Before Event: Fake Can Cancel: Fake Number of Inputs: §
Input Name
args inputs(0). OneStream Shared Wef WorkflowUnitPk
arge.inputs(1). O Shared. Wef D W

arge.inputs(2). System String
argz.inputs(3). System Guid
arge.inputs(4). System. Guid
Y alidateDimension
Iz Before Event: True Can Cancel: Fake

Transformation
Number of Inputs: §

Input Name

arzs inputs(0). OnsStream Shared Wef WorkflowUnitPk

arze inputs(1). O Shared Wef DimensionV
args inputs(2). System String
arze inputs(3). System Guid
argz.inputs(4). System.Guid
/alidateDimension
Iz Before Event: Fake Can Cancel: Fake

Transformation
Number of Inputs: §

Input Name

arzs inputs(0). OnaStream Shared Wef WorkflowUnitPk

arge inputs(1). O Shared. Wef Di V
arge.inputs(2). System String

arge.inputs(3). System Guid

argz.inputs(4). System Guid

API Overview Guide

78

Event Listing

‘alidateDimension Transformation
Iz Before Event: Trae Can Cancel: Fake Number of Inputs: 5
Imput Name
args.inputs(0). OnaStream. Shared Wef WorkflowUnitPk
args imputs(1). O Shared Wef D v

args. inputs(2). System String
args. inputs(3). System Guid
args inputs(4). Systam Guid

‘alidateDimension Transformation
Is Before Event: Faks Can Cancel: Fake Number of Inputs: 5§
Input Name

args. inputs(0). OneStream. Shared Wef WorkflowUnitPk

args. inputs(1). OneStream Shared Wef DimensionValidationInfo
args inputs(2). Systam String

args. inputs(3). System Guid

args. inputs(4). System Guid

Iz Before Event: Troe Can Cancel: Fale Number of Inputa: £
Input Name
args.imputs(0). OneStream Shared Wef WorkflowUnitPk
args.inputs(1). On=$ Shared Wef DimensionValidation]

arge.inputs(2). System String
arge inputs(3). System Guid
args.imputsi4). System Guid

Ls Before Event: Fale Can Cancel: Fake Number of Inputs: 5
Input Name
arge.inputs(0). OneStream Shared Wef WorkflowUnitPk
args.imputs(1). O Shared Wef Di ionV

args. inputs(2). System String
args. inputs(3). System Guid

YalidateDimension Transformation

Iz Before Event: Fake Can Cancel: Fake Number of Inputs: §
Input Name
args.inputs(4). System. Guid
SetEventRules Transformation
Is Before Event; Fake Can Cancel: Fake Number of Inputs: 4
Input Name

arge inputs(0). Onad Shared Wef ValidationTransf: iomP: Inf:
argz.inputs(1). OneStream Shared Wef WorkflowUnitFk
argz.inputs(2). System Boolean

arzs inputs(3) System Guid

[EndValidateTransform Transformation

Iz Before Event: Fake Can Cancel: Fake Number of Inputs: 4
Input Name
arge inputs(0). O Shared. Wef ValidationT

arge inputs(1). OnaStream Shared Wef WorkflowUnitPk
argz.inputs(2). System Boolean
argz.inputs(3). System. Guid

pdateWorkflowStatus Workflow
Iz Before Event: True Can Cancel: True Number of Inputs: 7
Input Nams

arzs inputs(0). OnaStream Shared Wef Workflowlnfo
args inputs(1). OnsStream Shared. Common StapClassificationTypes

argz.inputs(2). O Shared. Common. Types
args.inputs(3). System String

args.inputs(4). System String

arge.inputs(3). System String

arze inputs(). System Guid

API Overview Guide

Event Listing

pdateWorkflowStatus Workflow

Iz Before Event: Fake Can Cancel: True Number of Inputs: 7

Input Name
arge.mputs(0). OnaStream Shared Wef WorkflowInfo
argz.inputs(1). OneStream Shared Common StepClassificationTypes

argz.inputs(2). O Shared. Common. Types
args.inputs(3). System String

argz.inputs(4). System String

arge.inputs(5). System String

args.inputs(f). System Guid

[FinalizeValidateTransform Transformation
Iz Before Event: Fake Can Cancel: Falke Number of Inputs: 4
Input Name
args inputs(0). OnaStream Sharad Wef Validation Transf P Inf;

argz.inputs(1). OneStream Shared Wef WorkflowUnitPk
arge.imputs(2). Svstem Boeolean
args.inputs(3). System Guid

StartValidateIntersect Transformation

Iz Before Event: True Can Cancel: Falke Number of Inputs: 5
Inpui Name
arzs.inputs(0). O Shared Wef Vali

args.inputs(1). OnaStream Shared Wef WorkflowUnitPk
arge.imputs(2). Svstem Boeolean

arge.inputs(3). OnaStream Shared Wef LoadDataMode
argz.inputs(4). System. Guid

pdateWorkflowStatus Workflow
Is Before Event: Trae Can Cancel: True Number of Inputs: 7
Input Name

arzs inputs(l). OnsStream Sharad Wef WorkflowInfo
args.inputs(1). OnsStream Shared Common StepClassificationTypes
arzs inputs(2). OnaStream Sharad Common WorkflowStatusTypas

API Overview Guide

80

Event Listing

IpdateWorkflowStatus ‘Workflow
Is Before Event: Trae Can Cancel: True Number of Inputs: 7
Input Name

arge inputs(3). Svstem String
args.inputs(4). System String
argz.inputs(3). System String
args.inputs(§). System Guid

IpdateWorkflowStatus Workflow
Iz Before Event: False Can Cancel: Truoe Number of Inputs: 7
Input Name

argz inputs(0). OneStream Shared Wef WorkflowInfo
args.inputs(1). OneStream Shared. Common. StepClassificationTypes
arge inputs(2). OnaStream Sharad Common WorkflowStatusTypes
args.inputs(3). System String

arge inputs(4). System String

args.inputs(5). System String

arge inputs(§). System Guid

[EndValidateIntersect Transformation
Iz Before Event: Falze Can Cancel: Fake Number of Inputs: 5
Input Name
arzs.inputs(0). O Shared Wef Vali

args.inputs(1). OnaStream Shared Wef WorkflowUnitPk
arge inputs(2). Svstem Boeolean

args.inputs(3). OnaStream Shared Wef LoadDataMode
arge inputs(4). Svstem Guid

IpdateWorkflowStatus ‘Workflow
Is Before Event: True Can Cancel: True Number of Inputs: 7
Input Name

arzs inputs(D). OneStream Shared Wef Workflowlnfo
arzs inputs(1). OnaStream Sharad Common StapClassificationTypes

Shared. Common. Types

args.inputs(Z). O

API Overview Guide

81

Event Listing

pdateWorkflowStatus ‘Workflow
Is Before Event: True Can Cancel: True Number of Inputs: 7
Input Name

arge inputs(3). System String
args.inputs(4). System String
arge.inputs(3). System. String
arge inputs(f). System Guid

pdateWorkflowStatus ‘Workflow
Is Before Event: Fake Can Cancel: True Number of Inputs: 7
Input Name

arge.inputs(0). OnaStream Shared Wef WorkflowInfo
arge.inputs(1). OneStream Shared Common StepClassificationTypes
args.inputs(2). OneStream Shared. Common WorkflowStatusTypes
arge.inputs(3). System String

arge.inputs(4). System String

args.inputs(5). System Siring

arge.inputs(6). System Gmd

[FinalizeValidateIntersect Transformation
1z Before Event: Falke Can Cancel: Fake Number of Inputs: 5
Input Name
args inputs(0). O Shared Wef Vali

arzs inputs(1) OnaStream Shared Wef WorkflowUnitPk
args.inputs(2). System Boolean

args inputs(3). OnsStream Shared Wef LoadDataModa
arzs inputs(4). System Guid

pdateWorkflowStatus ‘Workflow
Is Before Event: Trae Can Cancel: True Number of Inputs: 7
Input Name

arge.inputs(0). OnaStream Shared Wef WorkflowInfo
arge.inputs(1). OneStream Shared Common StepClassificationTypes
args.inputs(2). OneStream Shared. Common WorkflowStatusTypes

API Overview Guide

82

Event Listing

IpdateWorkflowStatus ‘Workiflow
Iz Before Event: True Can Cancel: True Number of Inputs: 7

Input Name
argz.inputs(3). System String

arzs inputs(4). System String

args inputs(5). System String

args inputs(6). Systam Guid
IpdateWorkflowStatus

Is Before Event: Fake Can Cancel: True Number of Inputs: 7

rkflow

Input Name
args.inputs(D). OneStream Shared Wef Workflowlnfo
args inputs(1). OnsStream Shared Common StapClassificationTypes

argz.inputs(2). O Shared. Common.” Types
arge.inputs(3). System String

args.inputs(4). System String

arge.inputs(5). System String

args.inputs(). System Guid

IpdateWorkflowStatus ‘Workflow
Is Before Event: Trae Can Cancel: True Number of Inputs: 7
Input Name

arge.inputs([). OnaStream Shared Wef WorkflowInfo
args.inputs(1). OneStream Shared. Common. StepClassificationTypes
arge.inputs(2). OnaStream Shared Common WaorkflowStatusTypes
args.inputs(3). System String

arge.inputs(4). Svstem String

args.inputs(5). System String

arge.imputs(F). Svstem Gumd

IpdateWorkflowStatus ‘Workflow
Is Before Event: Fake Can Cancel: True Number of Inputs: 7
Input Name

args inputs(D). OneStream Shared Wef Workflowlnfo

IpdateWorkflowStatus Workflow
Is Before Event: Fake Can Cancel: True Number of Inputs: 7
Input Name

argz.inputs(1). OmeStream Shared. Common. StapClaszificationTypes
arge.inputs(2). OneStream Shared Common WorkflowStatusTypes
arge.inputs(3). System String

args.inputs(4). System String

arge.inputs(3). System String

argz.inputs(6). System Guid

SaveCubeData SaveData
Iz Before Event: True Can Cancel: True Number of Inputs: 0
Input Name
arge.inputs(0). SAVE DATA EVENT IS USED FOR DEBUG ONLY
Is Before Event: Trone Can Cancel: Fake Number of Inputs: §
Input Name

arge.inputs(0). OnsStream Shared Wef LoadCubaFrocezsInfo
argz.inputs(1). OneStream. Shared Wef WorkflowUnitPk
arge.inputs(2). System Boolean

argz.inputs(3). OneStream Shared Wef LoadDataMode
arge.inputs(4). System Guid

[EndLoadIntersect Transformation
Iz Before Event: False Can Cancel: False Number of Inputs: 5§
Input Name

arge.inputs(0). OnsStream Shared Wef LoadCubaProcezsInfo
argz.inputs(1). OneStream Shared Wef WorkflowUnitPk
arge inputs(2). System Boolean

argz.inputs(3). OneStream Shared Wef LoadDataMode

arge inputs(4). System Guid

API Overview Guide

83

Event Listing

JpdateWorkflowStatus ‘Workflow
Is Before Event: True Can Cancel: Trae Number of Inputs: 7
Input Name

args.inputs((). OneStream Shared Wef Workflowlnfo

args inputs(1). OneStream Shared Common StepClassificationTypes
args.inputs(2). OneStream Shared Common WorkflowStatusTypes
argz.inputs(3). Svstem Sfring

args.inputs(4). System String

argz. inputs(3). Svstem Sring

args.inputs(6). System Guid

IpdateWorkflowStatus ‘Workilow
Is Before Event: Fake Can Cancel: Trae Number of Inputs: 7
Input Name

args.inputs((). OneStream Shared Wef Workflowlnfo
argz.imputs(1). OnaStream.Shared Common StepClaszificationTypes
args.inputs(2). OneStream Shared Common WorkflowStatusTypes
argz.imputs(3). System String

args.inputs(4). System String

args.inputs(3). System.Siring

args.inputs(6). System Guid

[FinalizeL.oadIntersect Transformation

I: Before Event; Fake Can Cancel: Fake Number of Inputs: 5
Input Name
g inputs(0). OneStream Shared Wef LoadCubeProcesslaf:

args.imputs(1). OneStream Shared Wef WorkflowUnitPk
args.inputs(2). System Boclean
args.inputs(3). OneStream Shared Wef LoadDataMods
args.inputs(4). System Guid
StartLoadIntersect Transformation
Iz Before Event: True Can Cancel: Falze Number of Inputs: 5

API Overview Guide

84

Event Listing

StartLoadIntersect Transformation
Iz Before Event: True Can Cancel: Fake Number of Inputs: 5§
Input Name

argz.inputs(0). On=S Shared. Wef LoadCubePr Inf
argz.inputs(1). OneStream Shared Wef WorkflowUnitPk
argz.inputs(2). System Boclean

arge.inputs(3). OnaStream Shared Wef LoadDatalMods
args.inputs(4). System Guid

[EndLoadIntersect Transformation
1z Before Event: Fake Can Cancel: Fake Number of Inputs: 5
Imput Name

args inputs(0). OnaStream Shared Wef LoadCubaProesssInfi
arzs inputs(1). OnsStream Shared Wef WorkflowUnitPk
arzs.inputs(2). System Boolean

arzs inputs(3). OnsStream Shared Wef LoadDataMode

arzs inputs(4). System Guid

pdateWorkflowStatus Workflow
Iz Before Event: True Can Cancel: Troe Number of Inputs: 7
Input Name

arge inputs(0). OnaStream Shared Wef WorkflowInfo
argz.inputs(1). OneStream.Shared. Common. StepClassificationTypes
arge.inputs(2). OnaStream Shared. Common WorkflowStatusTypes
arge.inputs(3). Svstem Siring

args.inputs(4). System String

arge.inputs(3). Svstem Siring

args.inputs(f). System Guid

pdateWorkflowStatus Workflow
Iz Before Event: Fake Can Cancel: Troe Number of Inputs: 7
Input Name

arge.inputs(0). OnaStream Shared Wef Workflowlnfo
argz.inputs(1). OneStream.Shared. Common. StepClassificationTypes

pdateWorkflowStatus ‘Workflow
Iz Before Event: Falee Can Cancel: Troe Number of Inputs: 7
Input Name
argz inputs(2). O Shared. Common. Types

args.inputs(3). System String
arge inputs(4). Svstem String
args.inputs(5). System String
arge inputs(6). System Gmd

[FinalizeLoadIntersect Transformation
Is Before Event: Fake Can Cancel: Fake Number of Inputs: §
Taput Name

arzs.inputs(0). OnsStream Shared Wef LoadCubsProcassInfo
arss inputs(1). OnsStream Sharad Wef WorkflowUnitPk
arzs.inputs(2). System Boolean

arzs inputs(3). OnsStream Shared Wef LoadDataMode

arzs inputs(4). System Guid

StarfProcessCube DataQuality
Iz Before Event: False Can Cancel: Fake Number of Inputs: 3
Input Name

argz. inputs(0). OneStream Shared Wef ProcessCubeProceszInfo
args.inputs(1). OnaStream Shared Wef WorkflowUnitPk

arzs inputs(2). O Shared Wef Task:
Iz Before Event: Trume Can Cancel: Fake Number of Inputs: 3

Input Name

args.inputs(0). OnaStream Shared Wef WorkflowUnitPk

arzs inputs(1). O Shared Wef Task:

args inputs(2). OnaStream Sharad Wef DataUnitinfo

API Overview Guide

85

Event Listing

Iz Before Event: Fake Can Cancel: Fake Number of Inputs: 3
Input Name
argz.imputs(0). OneStream Shared Wef WorkflowUnitPk
args inputs(1). Ona% Sharad Wef TaskActivityl
args.inputs(2). OneS Shared. Wef DatalUnitnfc
Iz Before Event: True Can Cancel: Fake Number of Inpuis: 3
Input Name
argz.inputs(0). OnaStream Shared Wef WorkflowUnitPk
argz.inputs(1). O Shared. Wef Tazk.

arzs inputs(2). OnaStream Sharad Wef DataUnitinfo

Iz Before Event: True Can Cancel: Fake Number of Inputs: 3
Input Name
argz.inputs(0). OnaStream. Shared. Wef WorkflowUmtPk
args inputs(1). OnaS Shared Wef Task A ctivityT

argz.inputs(2). OnaStream. Shared Wef DataUnitInfo
[EndProcessCube

Iz Before Event: Falee Can Cancel: False Number of Inputs: 3

Input Name
argz.inputs((). OneStream Shared Wef ProcessCubeProcessInfo
arge.inputs(1). OnaStream. Shared Wef WorkflowUnitPk

argz.inputs(2). OnaS Shared Wef Task A ctivity[:
IpdateWorkflowStatus ‘Workflow
Is Before Event: True Can Cancel: True Number of Inputs: 7
Input Name

arzs inputs(0) OnaStream Sharad Wef WorkflowInfo
arzs inputs(1). OnsStream Shared. Common StapClassificationTypes

arge. inputs(2). O Shared. Common.’ Types

IpdateWorkflowStatus ‘Workflow
7

Iz Before Event: Trae Can Cancel: True Number of Inputs:

Input Name
arge.inputs(3]. System String

argz.inputs(4). System. String
arge.inputs(3). System String
arge.inputs(f). System Gud

IpdateWorkflowStatus ‘Workflow

Iz Before Event: False Can Cancel: True Number of Inputs: 7

Input Name
args inputs(D). OnsStream Shared Wef WorkflowInfo
arge inputs(1). OnsStraam Shared Common StapClassificstionTypes

arge.inputs(2). O Shared Common. Types
args.inputs(3). System.String
args.inputs(4). System.String
args.inputs(3). System.String
arge.inputs(f). System Gud

[FinalizeProcessCube

Iz Before Event: False Can Cancel: False Number of Inputs: 3

Input Name

argz.inputs(0). OneStream Shared Wef ProcessCubeProcessInfo
arge.inputs(1). OneStream Shared Wef WorkflowUnitPk
arsz.inputs(2). O Shared Wef Task:

API Overview Guide

86

Introduction

Introduction

The purpose of the OneStream Finance Functions API Guide is to provide detailed information
about the technologies and application programming interfaces (APIs) available to consultants
and developers interested in extending the functionality of OneStream.

This document contains information about the technologies used in the OneStream Software
product, naming conventions and organizational approaches used by the engineering team. It
also includes detailed reference listings for APl methods and events exposed by OneStream.

API Overview Guide

87

Member ID

Member ID

There are many functions that use MemberID as an integer to pass in as a property. These
functions get the current POV of the specific Dimension member to perform a variety of tasks,

such as:
» Get Current Year based on Time POV
o Example: Api.Time.GetYearFromld(api.Pov.Time.Memberld)
» Get Text field value from Entity POV
o Example: Api.Entity. Text(api.Pov.Entity.Memberld, 1)
* Get Account Type based on current Account POV
o Example: Api.Account.GetAccountType(api.Pov.Account.Memberld)

When working with formulas and calculations, it is better to work with Memberld versus Member
Name.

Api.Pov.Time.Memberid

Api.Pov.Time.Memberld is obtained from the Time Member Id for the current POV being executed
during the calculation. The Time.Memberld is stored as an unique integer to represent a single
Time member. The uniqueness is determined by the combination of the Year and Period.

API Overview Guide 88

Member ID

4 2019
4 () 2019H1 - H1 2019
4 © 2019Q1 - Q12019
© 2019M1 - Jan 2019
© 2019M2 - Feb 2019
© 2019M3 - Mar 2019
4 O 2019Q2 - Q2 2019
© 2019M4 - Apr 2019
© 2019M5 - May 2019
© 2019M6 - Jun 2018
a4 (O 2019H2 - H2 2019
4 (201903 - Q3 2019
© 2019M7 - Jul 2019
(© 2019M8 - Aug 2019
© 2019M3 - Sep 2019
4 © 201904 - Q4 2019
© 2019M10 - Oct 2019
© 2019M11 - Nov 2018
© 2019M12 - Dec 2019

H1 =001
Q1=002
M1 =003
M2 =004
M3 =005
Q2 =006
M4 =007
M5 =008
M6 = 009
H2=010
Q3 =011
M7 =012

API Overview Guide

89

Member ID

M8 =013
M9 =014
Q4 =015
M10 =016
M11 =017
M12=018

The Time Memberld is constructed like this: 2019003000

The api.Pov.Time.Memberld is used as a property in many functions. Here are some of the most

common functions:
¢ api.Time.GetYearFromld
¢ api.Time.GetPeriodNumFromld
¢ api.Time.GetNumDaysInTimePeriod
¢ api.Time.AddTimePeriods

e api.Time.AddYears

Api.Pov.Time.Memberld Usage

Example using api.Pov.Time.Memberld:

Dim timeld &s Integer = apil.Pov.Time.MemberlId
BRApi.ErrorlLog.LogMessage{si, "TimeId = " & timeld)

ErrorLog result:

Timeld = 2018003000

Example using api.Pov.Time.Memberld in a working formula:

API Overview Guide

90

Member ID

'Get Current Year as Integer Based on Current POV TimeId
Dim curYear As Integer = apl.Time.GetYearFromId(api.Pov.Time.MemberId)

@ Function ITimeApi.GetYearFromId({Optional timeld As Integer) As Integer

'Execute Formula only if Current Year is Greater Than or Equal to 2818
If curYear >= 2818 Then
'Only Run for Base Entities and at Local Currency
If (Mot api.Entity.HasChildren() And {api.Cons.IsLocalCurrencyforEntity())}) Then
api.Data.Calculate("A#Cashlalc = A#18808")
End If
End If

Api.Pov.Entity.Memberid

Api.Pov.Entity.Memberld is obtained from the Entity Member Id for the current Entity POV being
executed during the calculation. The Entity.Memberld is stored as a unique integer to represent a
single Entity member. The Entity Member Id is also found using the Grid View in the Entity
Dimension Library.

Members = Dimension Properties | Grid View

Drag a column header and drop it here to group I

Mame T id T
Mone -999
All Crgs 39845890

Total GolfStream 39845940

Clubs 39845899

Api.Pov.Entity.Memberld is used as a property in many functions. Here are some of the most
common functions:

e Get Local Currency Id for current Entity POV.
o Example: api.Entity.GetLocalCurrencyld(api.Pov.Entity.Memberld)

¢ Get Local Currency Cons Member Name for current Entity POV.

API Overview Guide 91

Member ID

o Example:

api.Entity.GetLocalCurrencyConsMember(api.Pov.Entity.Memberld).Name
* Getvalue in Text Field for Dimension Members prior to executing formula calculation.
o Example: api.Entity. Text(api.Pov.Entity.Memberld, 1)

* Get Percent Consolidation for Parent Child Relationship and specific to user
localization. Can also determine by Scenario Type and Time.

o Example: api.Entity.PercentConsolidation(api.Pov.Entity.Memberld,
api.Pov.Parent.Memberld, api.Pov.ScenarioTypeld,
api.Pov.Time.Memberld). XFToStringForFormula

* Get Percent Ownership for Parent Child Relationship and specific to user localization. Can
also determine by Scenario Type and Time.

o Example: api.Entity.PercentOwnership(api.Pov.Entity.Memberld,
api.Pov.Parent.Memberld, api.Pov.ScenarioTypeld,
api.Pov.Time.Memberld). XFToStringForFormula

Api.Pov.Entity.Memberld Usage

Example using api.Pov.Entity.Memberld:

Dim entityId As Integer = api.Pov.Entity.MemberId
BRApi.ErrorLog.LogMessage(si, "EntityId = " & entityId)

ErrorLog Result:

Entityld = 29360129

Example using api.Pov.Entity.Memberld in a working formula:

API Overview Guide 92

Member ID

'Get Text Walue in Entity Text 1 Field for Current Entity POV
Dim entityText As String = api.Entity.Text(api.Pov.Entity.MemberId, 1)

'Only Run For Base Entities And at Local Currency
If (Not api.Entity.HasChildren({) &nd (api.Cons.IslLocalCurrencyforEntity({})) Then
'Execute Formulz if Entity has MA in the Entity Text 1 Field
If entityText.XFEqualsIgnoreCase("NA") Then
api.Data.Calculate("A#CashCalc = A#l@@a")
End IF
End If

Api.Pov.Account.Memberid

Api.Pov.Account.Memberld is obtained from the Account Member Id for the current Account POV
being executed during the calculation. The Account.Memberld is stored as a unique integer to
represent a single Account member. The Account Member Id is also found using the Grid View in
the Account Dimension Library.

Members = Dimension Properties = Grid View

Drag a column header and drop it here to group

Name Y id Y

w

Nane -99
GAAP Account Structure | 49283440

ncome Statement 49283455

69000 49283318

Api.Pov.Account.Memberld is used as a property in many functions. Here are some of the most
common functions:

¢ Get Account Type based on current Account POV
o Example: api.Account.GetAccountType(api.Pov.Account. Memberld)
* Getvalue in Text Field for Dimension Members prior to executing formula calculation

o Example: api.Account.Text(api.Pov.Account.Memberld, 1)

API Overview Guide 93

Member ID

Api.Pov.Account.Memberld Usage

Example using api.Pov.Account.Memberld :

Dim accountType As AccountType = apl.Account.GetAccountType(api.Pov.Account.MemberId)
BRApi.ErrorLog.LogMessage(si, "AccountType = " & accountType.ToString)

ErrorLog Result:

AccountType = Revenue

Example using api.Pov.Account.Memberld in a working formula:

"Get Account Type of Account and Use Specific FX Rate Type for Specific Account Types. Used in FinanceFunctionType.FXRate or Dynamic Calc
Dim accountType As String = api.Account.GetAccountType(api.Pov.Account.MemberId).ToString
Dim rateType As String = "ClosingRate”

If accountType = "Asset" Then

Dim rate As Decimal = api.FxRates.GetCalculatedFxRate(rateType, api.Pov.Time.MemberId, args.FxRateArgs.SourceCurrencyld, args.FxRateArgs.Dest(
Return New FxRateResult(rate)

End If

API Overview Guide 94

Dimension Primary Key - DimPk

Dimension Primary Key - DimPk

DimPk is known as Dimension Primary Key. This is a unique primary key that is assigned to
Dimensions when they are created. It is a combination of the DimTypeld and the Dimld.

DimPk is commonly used to identify which Dimension should be used when checking for
members as base members or descendants in a specific Dimension. DimPk is commonly used in

the following functions:
* Get Dimension Primary Key of a Specific Dimension
o Example: api.Dimensions.GetDim("UD1DimName").DimPk
¢ Checkifitis a Base Member of a Specific Ancestor

o Example: api.Members.IsBase(dimPk, ancestorMemberld, baseMemberld,
dimDisplayOptions)

* Get Base Members of Parent from GetMember

o Example: api.Members.GetBaseMembers(api.Pov.UD1Dim.DimPk,
parent.Memberld, Nothing)

DimPK Usage

Example using DimPK:

Dim dimPK As DimPk = api.Dimensions.GetDim{"CostCenters").DimPk
BRapi.ErrorLog.LogMessage(si, "DimPk for CostCenters = " & dimPK.To5tring)

ErrorLog Result:

DimPk for CostCenters = DimTypeld: 9, Dimid: 17

Example using api.Pov.UD1Dim.DimPk in a working formula:

API Overview Guide 95

Dimension Primary Key - DimPk

'Retrieve Base Members of Services in UD1 to Use in GetDataCell Loop
Dim parent Az Member = api.Members.GetMember({DimType.UD1.Id, "Servicesz")}
Dim serviceNames As List(OFf Member) = api.Members.GetBaseMembers(api.Pov.UD1Dim.DimPk, parent.MemberId, Nothing)

'Loop through all the Service Base Members
If Not serviceMames Is Nothing Then
For Each serviceMame As Member In serviceNames
"GetDataCell for All Service Base Members as String and Decimal
Dim serviceNameCellString Az String = ("E#Houston:C#lLocal:S#Actusl:T#2019M1:v#Periodic: A#Dept_Intersection:F#None:0#Forms: I#None:Ul#" & service

Dim serviceMameCell As Decimal = api.Data.GetDatalell(serviceNameCellString).CellAmount
Next
End If

API Overview Guide 96

Dimension Type Id

Dimension Type Id

Dimension Type Id is a property of DimPk. The Dimension Type Id is a unique integer Id that is
assigned to a Dimension. The DimTypeld is found in the Dim table and the DimTypeld represents
each Dimension.

» Entity=0
e Scenario=2

e Account=5

e Flow=6

« UD1=9

« UD2=10
« UD3=11
e UD4=12
e UD5=13
« UD6=14
e UD7=15
« UD8=16

The DimTypeld is used in various functions. DimTypeld is most commonly used with the
GetMember or GetMemberld functions where the first property in the function is DimTypeld. In
this case, GetMember and GetMemberld needs to know which Dimension Id to use for the
member the function is looking for.

* Get a specific Member in a specific Dimension
o Example: api.Members.GetMember(DimType.Account.ld, "AcctMemberName")
+ Get Member Id for a specific Member in a specific Dimension

o Example: api.Members.GetMemberld(DimType.Account.ld, "AcctMemberName")

API Overview Guide 97

Dimension Type Id

DimTypelD Usage

Example using DimTypeld :

Dim dimTypeld As Integer = DimType.fAccount.Id
BRApL.ErrorLog.LogMessage(si, "DimTypeID for Account = " & dimTypeld.ToString)

ErrorLog Result:

DimTypelD for Account = 5

Example using DimType.Account.ld in a working formula:

'Get Cash Account Member and Store as a Variable to Pass into Api.Data.Calculate
Dim acctMember 4As Member = api.Members.GetMember(DimType.Account.Id, "1882a")
apl.Data.FormulaVariables.SetMemberVariable("variableAccount”,acctMember)
gpi.Data.Calculate("A#CashCalc= AfvariableAccount * 1@@")

API Overview Guide

98

Data Unit Dimension POV

Data Unit Dimension POV

Stored calculations run based on the Data Unit POV. The Data Unit Dimension consists of Cube,
Entity, Parent, Consolidation, Time, and Scenario.

Because stored calculations run off Data Unit Dimensions, these Dimensions are used as part of
If Statements to execute calculations on conditions. The Data Unit Dimensions should not be
used as destination data buffers, and should not be used on the left hand side of the equation in a
api.Data.Calculate formula.

Account related Dimensions such as Account, Flow, and UD’s are not available at run-time of the
calculations. Therefore, they cannot be used in the If Statements for stored calculations.
However, they are available for Dynamic Calculations.

Run for POV and Check Member Names for Data Unit Dimensions Before Executing Calculation:
« |f api.Pov.Cube.Name.XFEqualsignoreCase("CubeName") Then
« |f api.Pov.Entity.Name.XFEqualslgnoreCase("EntityName") Then
 [fapi.Pov.Scenario.Name.XFEqualslgnoreCase("ScenarioName") Then

« |fapi.Pov.Cons.Name.XFEqualslgnoreCase("USD") Then

Data Unit Dimension POV Usage

Example using api.Pov.Entity.Name :

Dim entityPovName As String = api.Pov.Entity.Mame
BRApi.ErrorLog.LogMessage(si, "Entity Pov Mame = " & entityPovMame)

ErrorLog Result:

Entity Pov Mame = Houston Heights

Example using api.Pov.Entity.Name in a working formula:

"Only Run Calculation For Houston Heights

If api.Pov.Entity.Name.XFEqualsIgnoreCase("Houstaon Heights™") Then
api.Data.Calculate("A#CashCalc = ARleoga")

End IF

API Overview Guide 99

Data Unit Dimension POV

"Only Run Calculatiom For Houston Heights
Dim entityPovhame fAs String = api.Pov.Entity.Mame

If entityPovName.XFEqualsIgnoreCase("Houston Heights") Then
api.Data.Calculate("A#CashCalc = ARLl@08a")
End IF

API Overview Guide 100

Time Functions

Time Functions

The following APIs are some of the most common time functions:
¢ api.Time.GetYearFromld
¢ api.Time.GetPeriodNumFromld
e api.Time.GetNumDaysInTimePeriod
e api.Time.AddTimePeriods

e api.Time.AddYears

Api.Time.GetYearFromid

This function gets the year from the current POV Time Id. It evaluates the year and then
introduces logic to execute the formula.

"Get Current Year as Integer Based on Current POV Timeld
Dim curYear As Integer = api.Time.GetY¥YearFromId(api.Pov.Time.MemberId)

@ Function ITimeApi.GetYearFromId(Optional timeld As Integer) As Integer

"Execute Formula only if Current Year is Greater Than or Equal to 2818
If curYear >= 2818 Then
'Only Run for Base Entities and at Local Currency
If (Mot api.Entity.HasChildren() And (api.Cons.IslLocalCurrencyforEntity())}) Then
api.Data.Calculate("A#Cashlalc = A#1EEE8")
End If
End If

Api.Time.GetPeriodNumFromld

This function gets the period number from the current POV Time Id. The period is static and is
configured with either months or weeks followed by the period number. For example: M1 —M12 or
W1 —W54. It evaluates the period number and then introduces logic to execute the formula.

Api.Time.GetPeriodNumFromid Usage

Example using api.Time.GetPeriodNumFromld :

API Overview Guide 101

Time Functions

"Get Current Period As Integer Based on Current POV TimeId
Dim curPeriod As Integer = api.Time.GetPeriodMumFromId(api.Pov.Time.MemberId)
BRApi.ErrorLog.LogMessage(si, "Period Number = " & curPeriod)

ErrorLog Result:

Period Number = 1

Example using api.Time.GetPeriodNumFromld in a working formula:

"Get Time Member Id to Get Year and Period
Dim timeId As Integer = api.Pov.Time.MemberId

"Get Current Year As Integer Based On Current POV TimeId
Dim cur¥Year As Integer = api.Time.GetYearFromId(api.Pov.Time.MemberId)

"Get Current Period As Integer Based on Current POV TimeId
Dim curPeriod As Integer = api.Time.GetPeriodNumFromId(api.Pov.Time.MemberId)

@ Function ITimeApi.GetPeriodNumFromId({Optional timeld As Integer) As Integer

"Execute Formula only if Current Year is Greater Than or Egual to 2818
"AND Current Period Number is Greater Than or Equal to 1
If curYear »= 2818 And curPeriod »*= 1 Then
'Only Run for Base Entities and at Local Currency
If (Mot api.Entity.HasChildren() And (api.Cons.IslLocalCurrencyforEntity())) Then
api.Data.Calculate("A#Cashlalc = A#1@088")
End If
End If

Api.Time.GetNumDaysInTimePeriod

This function gets the number of days from the current POV Time Id. The number of days are
already programmed depending on the month that is selected. It evaluates the number of days for
a period and then introduces logic to execute the formula.

Api.Time.GetNumDaysInTimePeriod Usage

Example using api.Time.GetNumDaysInTimePeriod:

'Get Current Number of Days in Time Period
Dim numDays &s Integer = apl.Time.GetMumDaysInTimePeriod(apl.Pov.Time.MemberId)
BRApi.ErrorLog.lLogMessage(si, "Mumber of Days in Periocd = " & numDays)

ErrorLog Result:

API Overview Guide 102

Time Functions

Mumber of Days in Period = 31

Example using api.Time.GetNumDaysInTimePeriod in a working formula:

'Get Time Member Id to Get Year and Period
Dim timeld As Integer = api.Pov.Time.MemberId

'Get Current Year As Integer Based On Current POV TimelId
Dim curYear &z Integer = apl.Time.GetYearFromId(api.Pov.Time.MemberId)

'Get Current Period As Integer Based on Current POV TimeId
Dim curPeriod As Integer = api.Time.GetPeriodMumFromId(api.Pov.Time.MemberId)

'Get Current Number of Days in Time Period
Dim numDays &s Integer = apl.Time.GetMumDaysInTimePeriod(apl.Pov.Time.MemberId)

& Function ITimedpi.GetNumDaysInTimePeriod(Optional timeld As Integer) 4s Integer

'Execute Formula only if Current Year is Greater Than or Equal to 2818
'"AMND Current Period Mumber is Greater Than or Equal to 1
'AND Number of Days is Greater Than or Equal to 38 Days
If {curYear »= 2818 And curPerilod »= 1 And numDays »>= 3@8) Then
'Only Run for Base Entities and at Local Currency
If (Mot api.Entity.HasChildren() And (api.Cons.IslLocalCurrencyforEntity())) Then
gpi.Data.Calculate("A#Cashlalc = A#10@888")
End IFf
End If

Api.Time.AddTimePeriods

This function adds time periods to the current POV Time Id. It passes that data to different
functions like GetPeriodNumFromld and then introduces logic to execute the formula.

Api.Time.AddTimePeriods Usage

Example using api.Time.AddTimePeriods:

'Get Current Time Member Id, Add 2 Periods, and Ok to Span Years

'Example: Current Time Member Id = 2018@838@0@. Add 2 Pericds, Then Member Id = 2813985088

Dim addTime fAs Integer = api.Time.AddTimePericds(api.Pov.Time.MemberId, 2, True)
BRApi.ErrorLog.LogMessage(si, "Add Time Periods = " & addTime)

ErrorLog Result:

Add Time Periods = 2018005000

API Overview Guide 103

Time Functions

Example using api.Time.AddTimePeriods in a working formula:

'Get Time Member Id to Get Year and Period
Dim timeId As Integer = api.Pov.Time.MemberId

'Get Current Time Member Id, Add 2 Periods, and Ok to Span Years
'Example: Current Time Member Id = 2013093888. Add 2 Periods, Then Member Id = 29138250828
Dim addTime As Integer = apl.Time.AddTimePeriods(api.Pov.Time.MemberId, 2, True)

@ Function ITimeapi.AddTimePeriods{timeld As Integer, numTimePeriodsToAdd As Integer, ockToSpanYears As

'Get Period from Add Time Period and Pass in GetPeriodNumFromId
Dim periodMum As Integer = api.Time.GetPeriodMumFromId{addTime)

'Execute Formula Only in Mar Period
If periodMum = 3 Then
'Only Run for Base Entities and at Local Currency

If (Mot api.Entity.HasChildren() &nd (api.Cons.IsLocalCurrencyforEntity())) Then
api.Data.Calculate("A#CashCalc = A#1@0aa")
End If
End IF

Api.Time.AddYears

This function adds years to the current POV Time Id. It passes that data to different functions like
GetYearFromld or GetPeriodNumFromld and then introduces logic to execute the formula.

Api.Time.AddYears Usage

Example using api.Time.AddYears:

"Get Current Time Member Id and Add 2 Years

"Example: Current Time Member Id = 2015803800. Add 2 Years, Then Member Id = 2028003008
Dim addYears As Integer = api.Time.AddYears{api.Pov.Time.MemberId, 2)
BRApL.ErrorLog.LogMessage(si, "Added 2 Years To Current Time POV = " & addYears)

ErrorLog Result:

Added 2 Years To Current Time POY = 2020003000

Example using api.Time.AddYears in a working formula:

API Overview Guide 104

Time Functions

'Get Current Time Member Id and Add 2 Years
'Example: Current Time Member Id = 2018083008. Add 2 Years, Then Member Id = 2020083800
Dim addyYears Az Integer = api.Time.AddYears{api.Pov.Time.MemberId, 2)

@ Function ITimeApi.AddYears(timeld As Integer, numYearsToAdd As Integer) &s Integer

'‘Get Year from addYears and Pass it in for GetYearFromId function
Dim futurevYear 45 Integer = api.Time.GetYearFromId{addYears)

'Execute Formula Only in Year 2828
If futureYear = 2828 Then
'Only Run for Base Entities and at Local Currency
If (Mot api.Entity.HasChildren() And (api.Cons.IslLocalCurrencyforEntity())) Then
api.Data.Calculate("A#CashCalc = A#leeaa")
End IF
End IF

API Overview Guide 105

Using Member Functions for Calculations

Using Member Functions for
Calculations

Calculation Member functions are commonly used through the Finance Api’s for accessing
general information for any specified Member within a dimension. The Member functions allow a
rule writer to identify members, get member information, and identify base and parent members to
execute within Member Formulas and Business Rules.

The following are some of the most common Member functions for calculations:
o GetMember
» GetMemberlD

+ GetBaseMembers

GetMember

This function gets a specific dimension member. It is used for different functions like
api.Data.FormulaVariables, GetBaseMembers function, custom member lists, and when working
with Member Id within data buffers for processes like custom consolidation.

GetMember Usage

Example using GetMember:

Dim getMember As Member = api.Members.GetMember(DimType.Account.Id, "1@@88")
BRapi.ErrorLog.LogMessage(si, "Member Property Info = " & getMember.ToString)

ErrorLog Result:

Member Property Info = DimTypeld: 5. Memberld: 39845888,
Mame: 10000, Description: Petty Cash, Dimld: 38

Example using GetMember in a working formula:

API Overview Guide 106

Using Member Functions for Calculations

'Get Cash Account Member and Store &s a Variable to Pass into Api.Data.Calculate
Dim acctMember As Member = api.Members.GetMember(DimType.Account.Id, "l@2ge")
gpi.Data.FormulaVariables.SetMemberVariable("varizbleAccount”,acctMember)
apl.Data.Calculate("A#CashCalc= AfvarlableAccount * 1@@")

GetMemberld

This function gets a specific dimension member Id. This technique is commonly used when

working with source Data Buffers where the cells for a specific member |d need to be changed.

GetMemberlID Usage

Example using GetMemberld:

Dim getMemberId As Integer = api.Members.GetMemberId(DimType.Account.Id, "1@@d8a")
BRapi.ErrorLog.LogMessage(si, “"Member Id for 18888 = " & getMemberId.ToString)

ErrorLog Result:

Member Id for 10000 = 39845588

Example using GetMemberld in a working formula:

API Overview Guide

107

Using Member Functions for Calculations

"Get Member Id for CashCalc Account
Dim cashCalcId As Integer = api.Members.GetMemberId(DimType.Account.Id, "CashCalc")

"Create a data buffer with the cells from S#Actual:A#18888 and copy the cells to S#ActualCopy:A#CashCalc

Dim destinationInfo As ExpressionDestinationInfo = api.Data.GetExpressionDestinationInfo{"S#ictualCopy”™)

Dim sourceDataBuffer As DataBuffer = api.Data.GetDataBuffer(DatatpiScriptMethodType.Calculate, "S#Actual:A#18868", desti
"Check that the source Data Buffer exists
If Not sourceDataBuffer Is Nothimg Then
'Create a new result data buffer for data cells
Dim resultDataBuffer As DataBuffer = New DataBuffer()
'Loop through source data cells from the source data buffer
For Each sourceCell As DataBufferlell In sourceDataBuffer.DataBufferlells.Values
'"Only get source cells that have data
If (Not sourceCell.CellStatus.IsNoData) Then

'Copy the cell from 18888 - Petty Cash to CashCalc Account in ActualCopy Scenario
'The source data buffer contains source data cells with 18989 - Petty Cash AccountId
'Change the source Account Id for 18888 - Petty Cash with the CashCalc Account Id
Dim resultCell As New DataBufferCell(sourceCell)
resultCell.DataBufferCellPk.AccountId = cashCalcId
resultDataBuffer.5etCell(api.0bConntpp.5I, resultCell)

End If

Next
'Set Destination Data Buffer with new Data Buffer with new cells including the CashCalc AccountId

api.Data.SetDataBuffer{resultDataBuffer, destinationInfo)

End If

GetBaseMembers

This function gets base members from a specific parent member. It is commonly used when
working with Member Lists as part of FinanceFunctionType.MemberList, or to get base members

to loop through specific dimensions for api.Data.GetDataCell.

GetBaseMembers Usage

Example using GetBaseMembers:

'Retrieve Base Members of Services in UD1 to Use in GetDataClell Loop

Dim parent As Member = api.Members.GetMember(DimType.UD1l.Id, "Services™)
Dim serviceNames As List({0f Member) = api.Members.GetBaseMembers(api.Pov.UDiDim.DimPk, parent.MemberId, Nothing)

'Loop through all the Service Base Members
If Not serviceNames Is Mothing Then
For Each serviceMame Az Member In serviceMames
BRapi.ErrorLog.lLogMessage(si, "List of Base Members = " & serviceMame.ToString)

API Overview Guide 108

Using Member Functions for Calculations

ErrorLog Result:

List of Base Members = DimTypeld: 9, Memberld:
17825805, Name: GroundsMaint, Description: Ground
Maintenance, Dimld: 17

List of Base Members = DimTypeld: 3, Memberld:
17825797, Name: EquipMaint, Description: Equipment
Maintenance, Dimld: 17

List of Base Members = DimTypeld: 3, Memberld:
17825804, Name: GolfPros, Description: Golf Pro Staff,
Dimld: 17

List of Base Members = DimTypeld: 3, Memberld:
17825814, Name: ProShop, Description: ProShop Retail,
Dimld: 17

Example using GetBaseMembers in a working formula:

'Retrieve Base Members of Services in UD1 to Use in GetDataCell Loop
Dim parent As Member = api.Members.GetMember(DimType.UD1.Id, "Services")
Dim serviceNames As List(Of Member) = api.Members.GetBaseMembers(api.Pov.UD1Dim.DimPk, parent.MemberTd, Nothing)

‘Loop through all the Service Base Members
If Mot serviceMames Is Nothing Then
For Each serviceName As Member In serviceNames
‘GetDataCell for All Service Base Members as String, Decimal, and for International Rule Writing
Dim serviceNameCellString As String = ("E#Houston:C#lLocal:S#Actusl:T#2010M1:vE#Pericdic:A#Dept Intersection:F#None:0#Forms :IT#None: UL#" & serviceName.Name & ":U2#UD1Default:
Dim serviceNameCell As Decimal = api.Data.GetDataCell({serviceNameCellString).CellAmount
Dim serviceNameCellText As String = serviceNameCell.ToString("G", CultureInfo.InvariantCulture)

‘Check cell amount for intersection and then introduce logic based on cell amount
‘Use Data Buffer logic or api.Data.Calculate with SetDataBufferVariable function when in loop‘
Next
End If

API Overview Guide 109

Writing Stored Calculations

Writing Stored Calculations

When writing a Member Formula or a Business Rule for a Stored Calculation, the new calculated
numbers store data for that Cube, Entity, Parent, Cons, Scenario, and Time combination. For
example, a Data Unit.

Return is never seen in a Member Formula for Formula Pass. Instead of being returned, many
numbers are calculated and stored. When running a Calculation, Translation, or Consolidation, it
calls the Member Formula once for an entire Data Unit. OneStream does not tell with which
Account, Flow, or User Defined the numbers are being saved.

Initially, this may be confusing because Member Formulas are often written in an account’s
Formula property, and administrators believe OneStream will only allow that specific Member
Formula to write to that specific account. However, putting a Member Formula in an account’s
Formula property is only for organizational purposes. When OneStream calls that formula, it is
currently calculating a Data Unit and will initialize the APl engine with only the Data Unit
Dimensions.

Basic stored formulas are commonly used via the Api.Data.Calculate api function.
Api.Data.Calculate is used in three different ways:

« Api.Data.Calculate using Formula as String, Overload Functions, Eval Function, and
IsDurableCalculatedData

api.Data.Ca]culate(l)

A 1of 3¥ @ Sub DataApi.Calculate(formula As String, Optional accountFilter As String, Optional flowFilter As String, Optional originFilter As String, Optional icFilter As
String, Optional ud1iFilter As String, Optional ud2Filter As String, Optional ud3Filter As String, Optional ud4F\Ite|‘]§s String, Optional udSFilter As String, Optional
ud6Filter As String, Optional ud7Filter As String, Optional ud&Filter As String, Optional onEvalDataBuffer As EvalDataBufferDelegate, Optional userState As Object,
Optional isDurableCalculatedData As Boolean)

» Api.Data.Calculate using Formula as String and IsDurableCalculatedData

api.Data.Calculate()

4 2of 3w @ Sub Dataspi.Calculate(formula As String, isDurableCalculatedData As Boolean)

» Api.Data.Calculate using Formula as String and Eval Function

api.Data.Calculate()

| A 3of 3w @ sub DataApi.Calculate(formula As String, onEvalDataBuffer As EvalDataBufferDelegate, Optional userSRate As Object)

API Overview Guide 110

Writing Stored Calculations

Overload Function

The most common function is Api.Data.Calculate, which sets the value of one or more dimension
values (left side of formula) equal to another (right side). Final arguments (optional) are added to
the formula for Overload Functions, Evals, and Durable Data.

The Api.Data.Calculate function must abide by the data explosion rules, which means that the left
side and the right side of the formulas are balanced with the same dimension values on both
sides. If a Member is specified for a Dimension anywhere on the right side of the equation, you
must explicitly specify something for that Dimension on the left side of the equation.

This variation of the Api.Data.Calculate provides Member Filters (all optional) which can be used
to filter the results before saving them to the target or destination. This function is the most
powerful of the Api.Data.Calculate functions as it allows you to filter intersections. In addition, the
Eval function adds the ability to filter down the number of individual data cells processed by data
cell attributes such as CellAmount or CellStatus.

This function is commonly used to filter the source data buffer by base members of an Account
related dimension. For example, A#Sales may be the source data buffer but the need for all
products is not required for the calculation. Instead, A#Sales may need to be calculated by the
base members of Clubs. By using Clubs.Base for A#Sales, the A#Sales data buffer has been
reduced to only include Clubs.Base.

Api.Data.Calculate Usage

Example using Overload Function in a working formula:

'Add & Formula and use API.Data.Calculate with a filter on UD2 (product) so that

' A#[ClubsSall alc] = the A#68 account (Operating Sales) For just the base products under UD2#Clubs
‘Hint: api.Dat bssalesCalc] = A¥GBEEA™,,,,,, "UDZ MEMBER FILTER GOES HERE™)

'Formula will run at the base and parent levels

If {(Not api.Entity.HasChildren{)) And (api.Cons.IslocalCurrencyforEntity{))) Then
api.Data.Calculate("A#ClubsSalesCalc = A#68082",,,,,, ['u24C1ubs . Base")
End If

A 10of 3% @ Sub Datatpi.Calculate(formula As String, Optional accountFilter As String, Optional flowFilter As String, Optional originFilter As String, Optional icFilter As String,
Optional ud1Filter As String, Optional ud2Filter As String, Optional ud3Filter As String, Optional ud4Filter &s String, Optional udSFilter As String, Optional
ud6Filter As String, Optional ud7Filter As String, Optional udBFilter As String, Optional onEvalDataBuffer As |DataBufferDelegate, Optional userState As Object,
Optional isDurableCalculatedData As Boolean)

API Overview Guide 111

Writing Stored Calculations

IsDurableCalculatedData

This variation of Api.Data.Calculate lets you define whether data is durable or not. Durable data is
not cleared automatically when a Data Unit is re-calculated. It can only be cleared by calling
api.Data.ClearCalculatedData with the clearDurableCalculatedData Boolean property set to
True. As part of the standard Calculation sequence that runs during a Calculate or Consolidate,
Durable data will be ignored from processing the clear, unless the clear is specifically defined
within the Business Rule or Member Formula.

The most common reason to set the IsDurableCalculatedData to True is for seeding purposes. As
part of the first seeding, the goal may be to seed from one Scenario to another just once and
never seed it again. In this case, the seeded data should not be cleared at any point during the
Calculate or Consolidate process. This technique is commonly used in Budget or Forecast
processes where you are executing the seeding through a Dashboard. The formula may be
applied as a FinanceFunctionType.CustomCalculate or a FinanceFunctionType.Calculate in a
Business Rule.

IsCurableCalculatedData Usage

Example using IsDurableCalculatedData in a working formula:

Case Is = FinanceFunctionType.CustomCalculate

'Define & unique Function Mame that will be passed into Custom Calculate process
If args.CustomCalculatedrgs.FunctionMame. XFEqualsIgnoreCase("CopyScenario™) Then

'Declare variables that will be passed into api.Data.Calculate.
‘Selected values from parameters will be passed into api.Data.Calculate formula
Dim selectedTime As String = args.CustomCalculateArgs.MameValuePairs("SelectedTime™)
Dim sourceScenario As String = args.CustomCalculateArgs.NameValuePairs("SourceScenario™)
Dim targetScenario As String = args.CustomCalculateArgs.NameValuePairs("TargetScenario™)
'Only run for base entities and local currency
If ((Mot api.Entity.HasChildren{)) And (api.Cons.IsLocalCurrencyforEntity())) Then
‘Using api.Data.Calculate function with formula and IsDurableCalculatedData set to TRUE As Boolean.
‘Can use filters as well. Use RemoveMoData function or EVAL to eliminate processing data cells with NODATA
api.Data.Calculate("S#[" & targetScenarioc & "]:T#[" & selectedTime & "] = RemoveloData(S#[" & sourceScenario & "]:T#[" & selectedTime & "])", True)
End If

End If

Eval Function

Eval has an advanced capability that lets you get at the individual Data Cells in any Data Unit
created while processing an api.Data.Calculate script. It allows Eval() to be wrapped around a
subset of the formula’s math in order to evaluate the Data Buffer that was just created by running
that math.

API Overview Guide 112

Writing Stored Calculations

Prior to the 5.0 version and the introduction of the RemoveNoData function, Eval was commonly
used to evaluate individual data cells in a source data buffer to process based on cell amount or
cell status. Evaluating the number of No Data Cells for a Data Unit is an important factor for
performance and calculation efficiencies.

Eval was initially an important function to evaluate individual data cells but it has been replaced
with newer techniques such as GetDataBuffer and GetDataBufferUsingFormula, and looping
through cells within the data buffer, as well as the Remove functions.

Eval Function Usage

Example using Eval in a working formula:

[
(

Private Sub OnEvalDataBufFeE (ByVal api As FinanceRulesApi, ByVal evallMame As String, ByVal eventArgs As EvalDataBufferEventargs)
Try

"Start with and empty list of result cells.
"Good practice - Clear out DataBufferResults before executing

eventArgs.DataBufferResult.DataBufferlells.Clear()

"Locp over the source cells and assign a bonus % based on level
For Each scurceCell As DataBufferCell In eventArgs.DataBufferl.DataBufferCells.Values

'Only get source cells that have data and are greater than or egual to @
If (Mot sourceCell.CellStatus.IsNoData) And (sourceCell.CellAmount »>= @.88) Then
'Create new data buffer cells with the filtered data cells
Dim resultCell As New DataBufferCell(sourceCell)
"Condition if Level is greater than or egual to 1 and less than 2
If (sourceCell.CellAmount »>= 1.88) &nd (sourceCell.CellAmount < 2.88) Then
'Return 1% to multiply by Salary or A#58208
resultfell.CellAmount = @.1@

'Condition if Level is greater than or equal to 2 and less than 3

Else If (sourceCell.CellAmount »= 2.80) And (sourceCell.CellAmount < 3.88) Then
'Return 28% to multiply by Salary or A#58208
resultCell.Cellfmount = @.2@

'Condition if Level is greater than or equal to 3 and less than 4

Else If (sourceCell.CellAmount »= 3.80) And (sourceCell.CellAmount < 4.88) Then
'Return 3% to multiply by Salary or A#58208
resultlell.CellAmount = @.3@

Else 'All other conditions
'Return 5% to multiply by Salary or A#58200
resultfell.CellAmount = @.85

End If
'Set the final results of the data cells for the Data Buffer
eventArgs.DataBufferfesult.Setlell(api.SI, resultcell, False)

End If
Hext

Catch ex As Exception
Throw ErrorHandler.LogWrite(api.SI, New XFException(api.SI, ex))
End Try
End Sub

API Overview Guide 113

Summary

Summary

The Api.Data.Calculate is the easiest and simplest way to write a formula as a Member Formula
or a Business Rule. The construction of an Api.Data.Calculate formula must be balanced on each
side of the formula with the appropriate dimensions to prevent data explosion. There are three
different ways to use the Api.Data.Calculate function: Formula with Overload, Formula with
IsDurableCalculatedData, and Formula with Eval.

From a performance perspective:
1. Never use the Api.Data.Calculate in a loop when using variables.

2. Use Remove functions whenever possible especially for sparse data models with lots of
NODATA cells.

3. GetDataBuffer and GetDataBufferUsingFormula may have a better performance
impact. Try replacing Api.Data.Calculate when doing math with GetDataBuffer math. In
some cases, performance is better by using GetDataBuffer functions in place of
Api.Data.Calculate.

API Overview Guide 114

Remove Functions

Remove Functions

Remove Functions were introduced in the 5.0 release. They replaced the reasons to use the Eval
function. The basic need of the Eval function was to evaluate the individual data cells within a
source data buffer to apply logic for processing. In many cases, OneStream did not want to
process data cells in source data buffers that had a Cell Status of NODATA or Cell Amount = 0.
With the 5.0 release, functions do that without the need for writing additional logic.

The RemoveNoData and RemoveZeros functions provide the ability to not process individual
data cells within a source data buffer. They wrap the Remove() around a subset of the formula to
prevent processing of individual data cells from within a source data buffer. Remove functions are
used in Member Formulas or Business Rules.

Remove functions are used for performance reasons. Data Units may contain a great amount of
NODATA data cells or 0 value data cells. These cells could be needlessly processed during
calculation execution if these functions are not used in a Api.Data.Calculate formula.

RemoveZeros

RemoveZeros is used to remove data cells with a cell amount of 0 from the source data buffer. In
addition, this function removes data cells with a cell status of NODATA from the source data
buffer. It is important to evaluate if the Os are needed for the Api.Data.Calculate formula during
calculation execution.

RemoveNoData

RemoveNoData removes data cells with a cell status of NODATA ONLY from the source data
buffer. Unlike the RemoveZeros function, this function does not remove data cells with a cell
amount of 0.

NODATA cells and 0 cells can be found using the following methods:
1. Review the Data Unit Statistics when you right-click on a cell in Cube View.

2. Review the Application Analysis Dashboard and check the Entity Data Statistics Report.

API Overview Guide 115

Remove Functions

This is based on the Data Unit and Entity Data Statistics. There may be many Member Formulas

and Business Rules that are driving data creation. Therefore, all formulas would need to be
evaluated to determine whether these Remove functions are used. The higher the percentage

ratio of NODATA cells to Total Number of Stored Records, the more important it is to use these

Remove functions.

Example = 3,203 Stored Records with 2,019 of those Stored Records as NODATA cells. Nearly

65% of the Data Unit has NODATA cells to process which causes extra calculation time.

The Review functions can be found in Key Functions under Snippets.

(7) Data Unit Statistics

B Point Of View
Cube Houston
Entity Houston Heights
Parent
Consolidation UsD
Scenario Actual
Time 2018mM1

E General
Total Mumber of Stored Records 3203

B MODATA Status
[Number of NODATA Cells T 2019 |
Mumber of Zero Cells l 125
MNumber of Real Cells 1059
Mumber of Derived Cells 0

l () Dashboard - Entity Data Stats

T8I/

Entity Data Statistics

I;i,g?-@@{m% 1@ K[4 P P lg & E

Document Map 2 x

« Data Statistics
2010 (fl‘Entity Data Statistics

2011
2017
018

Entity: __Houston Heights

Actual

2018M1 Cons Member TotalCells RealDataCells InputCells JournalCells CalcCells NoDataCells Zero Data Cells
Siminston B g 3 g

uso 3203 1058 52 1858 2018 125

Remove Functions Usage

Example using RemoveZeros in a working formula:

API Overview Guide

116

Remove Functions

'Declare variable To Get period number From the current time peried
Dim curMonth As Integer = api.Time.GetPeriodNumFromId(api.Pov.Time.MemberId)
"Run for Entity Base Members Only
If (Mot api.Entity.HasChildren()) Then
"Check to see if current month is MI.
'If so, pull Ending Balances From M12 prior year. We are using F#MNone for this exercise
"If M2 - M12, pull Ending Balances or F#None from prior periocd in current year
"Only run the calculation for Balance Sheet base accounts
'Remove data cells with cell amount of @ and cell status of NoData
If curMonth = 1 Then
api.Data.Calculate("F#BegBalCalcRemove= RemoveZeros(F#None:T#PovPriorYearil2)", "A#[Balance Sheet].Base™)
Else
api.Data.Calculate(F#BegBalCalcRemove = RemoveZeros(F#BegBalCalc: T#PovPriorl)”, "A#[Balance Sheet].Base™)
End If
End If

Example using RemoveNoData in a working formula:

'Declare variable to get period number from the current time period
Dim curMonth As Integer = api.Time.GetPeriodNumFromId(api.Pov.Time.MemberId)
"Run for Entity Base Members Only
If (Mot api.Entity.HasChildren()) Then
"Check to see if current month is M1.
'If so, pull Ending Balances From M12 prior year. We are using Fé#tone for this exercise
"If M2 - M12, pull Ending Balances or F#None from prior pericd in current year
"Only run the calculation for Balance Sheet base accounts
"Remove data cells with cell status of MoData ONLY
If curMonth = 1 Then
api.Data.Calculate("F#BegBalCalcRemove= RemowveNoData(F#None:T#PovPriorYearMl2)", "A#f[Balance Sheet].Base™)
Else
api.Data.Calculate("F#BegBalCalcRemove = RemoveMoData(F#BegBalCalc:T#PovPriorl)”, "A#[Balance Sheet].Base™)
End If
End If

API Overview Guide 117

GetDataBuffer Functions

GetDataBuffer Functions

A Member Script may not be defined for the Api.Data.Calculate function because multiple Data
Cells, which seem completely unrelated to each other, are being processed and none of the
Dimension Members are constant. For those situations, use the GetDataBuffer and
SetDataBuffer functions.

GetDataBuffer and SetDataBuffer are more fundamental than using an Eval function. They allow
you to read numbers using a Member Script, process or modify each cell in the result, and then
save the changes. Common GetDataBuffer functions include:

o GetDataBuffer

GetDataBufferForCustomShareCalculation

GetDataBufferForCustomElimCalculation

GetDataBufferUsingFormula

SetDataBuffer

When using api.Data.Calculate functions, it is important to know which Member a formula is
attached to. For example, if the formula starts with Api.Data.Calculate(“A#Sales1 = ...”), put the
formula in the Sales1 account Member’s Formula setting.

However, when using GetDataBuffer functions, the formula may not be writing to a specific
Member. Every Data Cell saved is possibly written to a different dimension member. In this case,
the logic can be developed in a Business Rule and could be created as a Sub routine to execute
throughout Finance Business Rules.

GetDataBuffer Function

GetDataBuffer retrieves a Data Unit’s values during a particular consolidation, calculation, or
translation. When using GetDataBuffer, this is equivalent to the source data buffer or to the right
side of the equation for Api.Data.Calculate. Depending on which GetDataBuffer function you are
using, three or four properties can be used.

For the basic GetDataBuffer, three properties are used:

API Overview Guide 118

GetDataBuffer Functions

» ScriptMethodType As DataApiScriptMethodType
« SourceDataBufferScript As String
« ExpressionDestinationInfo As ExpressionDestinationInfo

The scriptMethodType typically uses the Calculate option for DataApiScriptMethodType.

The sourceDataBufferScript is equivalent to the right side of the equation for the
Api.Data.Calculate.

The expressionDestinationInfo is equivalent to the left side of the equation for the
Api.Data.Calculate. Frequently, this gets manipulated using the Dimension Id, passing in the
Dimension Member Id for the data buffer primary key.

The GetDataBuffer can be used in various ways, and is not limited to the following:

1. Use Data Buffers to perform Data Buffer math. In some cases, this can perform better than
an Api.Data.Calculate.

2. Use GetDataBuffer in place of Api.Data.Calculate to use in Sub routines which execute
code and instructions, are stored in memory, and are used within Functions throughout
Finance Business Rules.

GetDataBuffer Usage

Example using GetDataBuffer with Data Buffer Math in a working formula:

‘Alternate way to api.Data.Calculate("Ad#DataBufferMath:UD2#None = A#6@999:UD2#Top - A#54580:UD2#Top™). May have better performance impact.

"Run only for Local Currency and Base Entities
If ((Not api.Entity.HasChildren()) And (api.Cons.IsLacalCurrencyforEntity())) Then

‘Declare Variable for Destination Buffer
Dim destinationInfo As ExpressionDestinationInfo = api.Data.GetExpressionDestinationInfo("A#DataBufferMath:UD2#None™)

‘Get Source Data Buffer for Met Sales
Dim netSales As DataBuffer = api.Data.GetDataBuffer(DataApiScriptMethodType.Calculate, "RemoveNoData(A#6@999:UD24#Top)", destinationInfo)

'Get Source Data Buffer for Operating Expenses
Dim operatingExpenses As DataBuffer = api.Data.GetDataBuffer(DataApiScriptMethodType.Calculate, "RemoveNoData(A#54500:UD24Top)", destinationInfo)

'Create New Data Buffer With the End Result of Net Sales - Operating Expenses
Dim dataBufferExample As DataBuffer = (netSales - operatingExpenses)

'set the Destination Data Buffer
api.Data.SetDataBuffer (dataBufferExample, destinationInfo)

End If

Example using GetDataBuffer and SetDataBuffer in Business Rule Using Sub Routine in a
working formula:

API Overview Guide 119

GetDataBuffer Functions

Case Is = FinanceFunctionType.Calculate

"Execute Sub Routine in the Function to Return Results
Me.CalculateBonusUsingGetDataBuffer(api)

Private Sub CalculateBonusUsingGetDataBuffer(Byval api As FinanceRulesApi)
Try
'Define Destination Data Buffer or left side of the equation
'Will copy to A#Bonus while processing the data buffer in memory
Dim destinationInfo As ExpressionDestinationInfo = api.Datas.GetExpressionDestinationInfo(™™)
'Read the numbers for A#Salary into a source Data Buffer

Dim sourceDataBuffer As DataBuffer = api.Data.GetDataBuffer{DatafpiScriptMethodType.Calculate, "A#Salary”, destinationInfo)

'Check to make sure the source Data Buffer exists
If Mot sourceDataBuffer Is Mothing Then
‘Create a new data buffer for the result cells
Dim resultDataBuffer As DataBuffer = New DataBuffer()

"Loop over the source cells in the source Data Buffer
For Each sourceCell As DataBufferCell In sourceDataBuffer.DataBufferCells.Values
‘Only process cells that have data and cell amount that is greater than @
If ((Mot sourceCell.CellStatus.IsMoData) And (sourceCell.CellAmount > @.8@)) Then
'Create new data buffer cells from the filtered source cells from source Data Buffer
Dim resultCell As New DataBufferCell(sourceCell)

'Define A#Bonus as the target account to copy to

"Multiply dsta cell amounts by 5%

'Set the manipulated data cells to the data buffer

resultCell.DataBufferCellPk.AccountId = api.Members.GetMemberId(DimType.Account.Id, "Bonus™)
resultCell.Cellfmount = sourceCell.CellAmount * B.85

resultDataBuffer.setCell(api.sI, resultCell)

End If
Next

‘save the results to the destination data buffer
api.Data.SetDataBuffer(resultDataBuffer, destinationInfo)

End If

Catch ex As Exception
Throw ErrorHandler.logWrite{api.si, New XFException(api.si, ex))
End Try
End Sub

API Overview Guide

120

Unbalanced Math Functions

Unbalanced Math Functions

Unbalanced Math Functions

Unbalanced math functions are required when performing math with two Data Buffers, where the
second Data Buffer needs to specify additional dimensionality. The term Unbalanced is used
because the script for the second Data Buffer can represent a different set of Dimensions from the
other Data Buffer in the api.Data.Calculate text. These functions prevent data explosion. The four

Unbalanced Math functions are:

« AddUnbalanced

o Example: api.Data.Calculate("A#TargetAccount = AddUnbalanced
(A#OperatingSales, A#DriverAccount:U2#Global, U2#Global)")

+ SubtractUnbalanced

o Example: api.Data.Calculate("A#TargetAccount = SubtractUnbalanced
(A#OperatingSales, A#DriverAccount:U2#Global, U2#Global)")

* MultiplyUnbalanced

o Example: api.Data.Calculate("A#TargetAccount =MultiplyUnbalanced
(A#OperatingSales, A#DriverAccount:U2#Global, U2#Global)")

* DivideUnbalanced

o Example: api.Data.Calculate("A#TargetAccount =DivideUnbalanced
(A#OperatingSales, A#DriverAccount:U2#Global, U2#Global)")

When using Unbalanced Math functions, the first two parameters represent the first and second
Data Buffers on which to perform the function. The third parameter represents the Members to
use from the second Data Buffer when performing math with every intersection in the first Data
Buffer. The math favors the intersections in the first Data Buffer without creating additional

intersections.

Itis important that the dimensionality of the Target (left side of the equation) matches the
dimensionality of the first data buffer on the right side of the equation (argument 1).

Often, these functions would be used when one source data buffer is doing math with a specific
data cell intersection. This could be a rate, driver, or some data cell input.

API Overview Guide 121

Unbalanced Math Functions

Unbalanced Math Functions Usage

Example using MultiplyUnbalanced in a working formula:

‘Run for
If ((Not ns. TsLocalCurrencyforEntity())) Then
api.Data.Calculate("A#BonusUnbalanced = MultiplyUnbalanced (RemoveZeros(A#58200), A#BonusPercent: F#Hone:0#Forms: T#None: Uztlone: UsNone : Ud#lone :US#hone: Ug#None: UT#Hone : Us#lone, F#lione:0#Forms : T#llone: U2#None

GetDataBufferUsingFormula Function

The GetDataBufferUsingFormula function uses an entire math expression to calculate a final data
buffer. GetDataBufferUsingFormula can perform the same data buffer math as
Api.Data.Calculate, but the result is assigned to a variable, where Api.Data.Calculate actually
saves the calculated data.

GetDataBufferUsingFormula calculates multiple source data buffers first. Then, the result of the
math is stored in memory using a Formula Variable. Finally, the Formula Variable is used
anywhere within the Member Formula or Business Rule. This function is commonly used during
rule writing for Planning Business Rules using MultiplyUnbalanced, DivideUnbalanced, Trailing
functions such as trailing 12 months, and Allocations.

When using GetDataBufferUsingFormula, FilterMembers and RemoveMembers are used in
conjunction to shrink down dimensional members in the source Data Buffer.

FilterMembers

FilterMembers change a data buffer and only include numbers for the specified Dimensions. The
first parameter is the starting data buffer. This can be a variable name or an entire math equation
in parentheses. There can be as many parameters as needed to specify Member Filters and
different Member Filters can be used for multiple Dimension types. The resulting filtered data
buffer will only contain numbers that match the Members in the filters.

GetDataBufferUsingFormula Usage

Example using GetDataBufferUsingFormula in a working formula:

API Overview Guide 122

Unbalanced Math Functions

‘Alternate way to api.Data.Calculate("A#DataBufferMathUsingFormula:UD2#None = A#60099:UD2#Top - A#54500:UD2#Top”). May have better performance impact using
'GetDataBufferUsingFormula

‘Standard GetDataBufferUsingFormula formula

If ((Mot api.Entity.HasChildren(}) And (api.Cons.IslLocalCurrencyforEntity())) Then

‘Get Data Buffer by using GetDataBufferUsingFormula to do the math

Dim dataBufferExample As DataBuffer = api.Data.GetDataBuFferUsingFormula("RemoveloData(A460999: UD24Top) - RemoveNoData(A#54500: UD24Top)")
'Set Data Buffer Variable to pass into api.Data.Calculate formula. Can be used for multiple i.nstaT:es of api.Data.Calculate

‘Create a unigue name to name the Data Buffer as a Formula Variable

api.Data.FormulaVariables.SetDataBuffervarisble("dataBufferexample”, dataBufferExample, False)

*Pass variable into api.Data.Calculate using a &

‘Can pass this variable to other api.Data.Calculate, GetDataBufferUsingFormula, or Sub routines
api.Data.Calculate("A#DataBufferMathUsingFormula: UD2#None = $dataBufferExample™)

End If

Example using GetDataBufferUsingFormula with FilterMembers and MultipleUnbalanced in a
working formula:

‘Use Data Buffer Using Formula to filter specific members
*Ist argument inside () is the starting data buffer

*2nd argument is the filter based on the starting data buffer
*Can continue to add filters separated by a comna

Dim salesxp As DataBuffer = api.Data.

g Fi A#ALL, A#TotalExp.Base))")

‘Set Data Buffer Variable to pass salesExp to any other formula
api.Data. FormulaVarisbles .SetDataBufferVariable("salesExp”, salestxp, False)

*Use MultiplyUnbalanced to multiply all Expense Accounts by a specific data cell intersection and divide by 12
*Ist argument is Formula Variable multiplied by 2nd argument which is an individual data cell intersection
*3rd argument is the dimensions that make it unbslanced

Dim result As DataBuffer = api.Dat: ingf “Multd (E#GLobal: VeV

5 +Tétlone :U: 12), E#Global:VA#YTD: CHUSD: Féllone : #BeforeAd]
'Set Data Buffer Variable to pass result to any other member formula

api.Data. FornulaVariables .SetDatabufferVariable("result”, result, True)

*Calculate using Data Buffer Varisble. Can do additional math inside api.Data.Calculate
api.Data, Calculate ("V#Periodic = Sresult”)

API Overview Guide 123

	Introduction
	Development Technologies
	Programming Language
	User Interface Technology
	Server Technology
	Database Technology
	OneStream API Details and Database Documentation

	Developer Fundamentals
	VB.Net and C#
	In-Solution Documentation
	Business Rules Editor Overview
	Helpful Resources

	Platform Engines
	Workflow Engine
	Stage Engine
	Finance Engine
	Data Quality Engine
	Data Management Engine
	Presentation Engine
	BRApi

	Business Rules
	Anatomy of a Business Rule
	Business Rule Definition
	Business Rule Classifications
	Event Handler Business Rules
	Complex Expressions
	Business Rule Types
	Organizing and Referencing Business Rules

	API Structure and Organization
	Namespaces
	Namespaces Defined
	Namespace Hierarchy
	Microsoft Financial Calls
	In-Solution Development
	Custom Development

	Using System Tools
	System Business Rules
	Database
	Tables
	Tools
	Data Records

	Client API Listing
	Client API Object Hierarchy
	PowerShell

	Event Listing
	Event Handler Business Rules
	Event Firing Sequences

	Introduction
	Member ID
	Api.Pov.Time.MemberId
	Api.Pov.Time.MemberId Usage

	Api.Pov.Entity.MemberId
	Api.Pov.Entity.MemberId Usage

	Api.Pov.Account.MemberId
	Api.Pov.Account.MemberId Usage

	Dimension Primary Key - DimPk
	DimPK Usage

	Dimension Type Id
	DimTypeID Usage

	Data Unit Dimension POV
	Data Unit Dimension POV Usage

	Time Functions
	Api.Time.GetYearFromId
	Api.Time.GetPeriodNumFromId
	Api.Time.GetPeriodNumFromId Usage

	Api.Time.GetNumDaysInTimePeriod
	Api.Time.GetNumDaysInTimePeriod Usage

	Api.Time.AddTimePeriods
	Api.Time.AddTimePeriods Usage

	Api.Time.AddYears
	Api.Time.AddYears Usage

	Using Member Functions for Calculations
	GetMember
	GetMember Usage

	GetMemberId
	GetMemberID Usage

	GetBaseMembers
	GetBaseMembers Usage

	Writing Stored Calculations
	Overload Function
	Api.Data.Calculate Usage

	IsDurableCalculatedData
	IsCurableCalculatedData Usage

	Eval Function
	Eval Function Usage

	Summary
	Remove Functions
	RemoveZeros
	RemoveNoData
	Remove Functions Usage

	GetDataBuffer Functions
	GetDataBuffer Function
	GetDataBuffer Usage

	Unbalanced Math Functions
	Unbalanced Math Functions
	Unbalanced Math Functions Usage
	GetDataBufferUsingFormula Function
	FilterMembers
	GetDataBufferUsingFormula Usage

